
10-708 PGM (Spring 2019): Homework 3

Andrew ID: [your Andrew ID]
Name: [your first and last name]

Collaborators: [Andrew IDs of all collaborators, if any]

1 Variational Autoencoders (Lisa) [65 pts]

Figure 1: A Helmholtz machine [3, 1] contains two networks: (1) bottom-up “recognition” connections φ
that convert the input data into representations in successive hidden layers, and (2) top-down “generative”
connections θ that reconstruct the data from representation in one layer from the representation in the layer
above.

The Helmholtz machine (Figure 1) is an architecture that can find hidden structure in data by learning
a generative model of the data. Helmholtz machines are usually trained using unsupervised learning
algorithms such as the classical Wake-Sleep algorithm [3] or the modern Auto-Encoding Variational
Bayes (AEVB) [4], also known as variational autoencoder.

In this problem, you will (re-)derive and implement the Wake-Sleep and AEVB algorithms. The sections are
organized as follows:

(3 pts) Section 1.1: Derivation of the evidence lower bound objective (ELBO), which lowerbounds the
data log-likelihood log pθ(x).

(6 pts) Section 1.2: Derivation of the Wake-Sleep algorithm, which alternates between the Wake phase and
Sleep phase to optimize an estimate of ELBO.

(10 pts) Section 1.3: Derivation of AEVB, which optimizes a stochastic estimate of ELBO.

(3 pts) Section 1.4: Short-answer questions on Wake-Sleep and AEVB.

(8 pts) Section 1.5: Derivation of an alternate lower bound Lk(x) for the data log-likelihood, which will be
used to evaluate trained models in the next section.

(35 pts) Section 1.6: Implementations and experiments on the MNIST handwritten digits dataset.

1

For all parts, assume that latent variables z are distributed according to a prior p(z) = N(0, I). The Helmholtz
machine tries to learn the recognition parameters φ and generative parameters θ such that

qφ(z | x) ≈ pθ(z | x) ∝ pθ(x, z)

where:

• qφ(z | x) is the variational distribution approximating the posterior distribution pθ(z | x) for z given
the evidence x. Assume that qφ is parameterized by a Gaussian, i.e., qφ(z | x) = N(z;µφ(x),Σφ(x)).

• pθ(x, z) = p(z)pθ(x | z) is the joint probability of (x, z), where z ∼ p(z) = N(0, I), and x ∼ pθ(x | z) is
the likelihood.

Assume x are binary vectors. In other words, pθ(x | z) can be modeled with a sigmoid belief net, so the
likelihood is of the form pθ(x|z) = Bernoulli(fθ(z)). Actually, the data points x in MNIST take values in [0, 1]
rather than {0, 1}, but the loss term Eq[pθ(x | z)] still uses sigmoid cross-entropy loss, which is a common
practice [2].

1.1 Evidence Lower Bound Objective (ELBO)

Suppose we want to learn a directed latent variable model (Figure 2) that is able represent a complex
distribution p(x) over the data in the following form:

pθ(x) =

∫
pθ(x | z)p(z)dz (1)

x

z θ

N

Figure 2: The latent variable model in Problem 1.1.

Suppose we want to approximate the posterior distribution pθ(z | x) using some variational distribution
qφ(z | x). A tractable way to learn this model is to optimize the evidence lower bound objective
(ELBO), also known as the variational lower bound, defined as follows:

L(x) = Ez∼qφ(z|x)[log pθ(x, z)− log qφ(z | x)]

=

∫
z

qφ(z | x) log
pθ(x, z)

qφ(z | x)
dz .

(3 pts) For a single data point x(i), prove that

log pθ(x
(i)) ≥ L(x(i)).

Solution

2

The above result shows that, for iid data points x = {x(i)}Ni=1,

log pθ(x)
iid
=

N∑
i=1

log pθ(x
(i)) ≥

N∑
i=1

L(x(i)) = L(x)

which gives the ELBO L(x) on the data log-likelihood log pθ(x).

1.2 Wake-Sleep Algorithm

In this section, we will derive the optimization objectives for the Wake-Sleep algorithm, which decomposes
the optimization procedure into two phases:

• Wake-phase: Given recognition weights φ, we activate the recognition process and update the generative
weights θ to increase the probability that they would reconstruct the correct activity vector in the layer
below.

• Sleep-phase: Given generative weights θ, we activate the generative process and update the recognition
weights φ to increase the probability that they would produce the correct activity vector in the layer
above. Since it has generated the instance, it knows the true underlying causes, and therefore has
available the target values for the hidden units that are required to train the bottom-up weights φ.

1.2.1 Wake-phase

The Wake-phase fixes the recognition weights φ and optimizes a Monte Carlo estimate of ELBO w.r.t. the
generative weights θ.

(3 pts) Given N iid data points x = {x(i)}Ni=1, show that

θ∗ := arg max
θ
L(x)= arg max

θ

N∑
i=1

Ez∼qφ(z|x(i)) log pθ(x
(i) | z) (2)

which gives the Wake-phase objective.

Solution

Wake-phase Pseudocode: Given N iid data points {x(i)}Ni=1, do the following for each i ∈ [N]:

1. Feed x(i) into the recognition network to get µφ(x(i)) and Σφ(x(i)).

2. Draw L samples z
(i)
1 , . . . , z

(i)
L ∼ qφ(z | x(i)) = N(z;µφ(x(i)),Σφ(x(i))) .

3. For each l ∈ [L], feed z
(i)
l into the generative network to get fθ(z

(i)
l) for the likelihood pθ(x | z(i)

l) =

Bernoulli(x; fθ(z
(i)
l)).

Finally, use SGD to maximize

max
θ

N∑
i=1

1

L

L∑
l=1

log pθ(x
(i) | z(i)

l) (3)

This gives a Monte Carlo estimate of the Wake-phase objective in Eq. (2).

3

1.2.2 Sleep-phase

The Sleep phase fixes the generative weights θ and updates the recognition weights φ. It is generally intractable
to directly minimize the KL-divergence term in L(x) w.r.t. φ:

arg min
φ

DKL [qφ(z | x) ‖ pθ(z | x)] = arg min
φ

∫
z

qφ(z | x) log
qφ(z | x)

pθ(z | x)
dz

So instead, the Sleep phase minimizes the KL divergence the wrong way round,

arg min
φ

DKL [pθ(z | x) ‖ qφ(z | x)] .

(3 pts) Suppose we sample z ∼ p(z) = N(0, I), then sample x ∼ pθ(x | z). Show that

φ∗ := arg min
φ

DKL [pθ(z | x) ‖ qφ(z | x)] = arg max
φ

Epθ(x,z) [log qφ(z | x)] (4)

which gives the Sleep-phase objective.

Solution

Sleep-phase Pseudocode: Let L ∈ N be a sample size hyperparameter. For each l ∈ [L], do the following:

1. Draw zl ∼ N(0, I).

2. Sample xl from the generative network pθ(x | zl) = Bernoulli(fθ(z
l)).

3. Feed xl into the recognition network to get µ(xl) and Σ(xl).

4. Compute qφ(zl | xl) = N(zl;µ(xl),Σ(xl)).

Finally, do SGD to maximize

max
φ

1

L

L∑
l=1

log qφ(zl | xl) (5)

This gives a Monte Carlo estimate of the Sleep-phase objective in Eq. (4).

1.3 Autoencoding Variational Bayes (AEVB)

In this section, you will derive the optimization procedure for Auto-Encoding Variational Bayes (AEVB).
Unlike Wake-Sleep, AEVB avoids the two-stage optimization procedure and instead optimizes a stochastic
estimate of ELBO directly w.r.t. to parameters θ of the generative model (generation network) and parameters
φ of the variational distribution (recognition network).

(3 pts) For a given data point x(i), show that ELBO can be rewritten as

L(x(i)) = −DKL

[
qφ(z | x(i)) ‖ p(z)

]
+ Ez∼qφ(z|x(i))[log pθ(x

(i) | z)]. (6)

Solution

4

Equation (6) gives a stochastic estimator for ELBO:

L̃(x(i)) = −DKL

[
qφ(z | x(i)) ‖ p(z)

]
+

1

L

L∑
l=1

[log pθ(x
(i) | z(i,l))] (7)

where {z(i,l)}Ll=1 are sampled from qφ(z | x(i)). The AEVB algorithm optimizes this stochastic estimate of
ELBO using a Monte Carlo gradient estimate.

In order to optimize the AEVB objective in Eq. (7) efficiently, we use a reparameterization trick to
rewrite Eqφ(z|x)[·] such that the Monte Carlo estimate of the expectation is differentiable w.r.t. φ. More
specifically, we reparameterize the latent variable

z ∼ qφ(z | x(i)) = N(z | µφ(x(i)),Σ2
φ(x(i)))

as a deterministic function of the input x(i) and an auxiliary noise variable ε:

z = µφ(x(i)) + Σφ(x(i))� ε ε ∼ N(0, I) (8)

where � signifies an element-wise product, and Σφ(x(i)) is a vector of the same size as z.

(4 pts) Using this reparameterization, show that the AEVB objective in Eq. (7) can be rewritten as

L̃(x(i)) =
1

2

J∑
j=1

(
1 + log(Σ2

(i),j)− µ
2
(i),j − Σ2

(i),j

)
+

1

L

L∑
l=1

log pθ(x
(i) | z(i,l)). (9)

where µ(i) := µφ(x(i)) and Σ(i) := Σφ(x(i)).

Solution

The AEVB optimization procedure works as follows:

1. For each l ∈ [L], draw ε(l) ∼ N(0, I), and compute z(i,l) := µ(i) + Σ(i) � ε(l).

2. Optimize the AEVB objective in Eq. (9) w.r.t. µ, Σ, and θ.

(3 pt) Derive the gradients of the AEVB objective in Eq. (9) w.r.t. µ(i),j , Σ(i),j , and θ. (For the gradient

w.r.t. θ, you can leave the answer in terms of pθ(x
(i) | z(i,l)).)

Solution

1.4 Short-answer Questions

(1 pts) Wake-Sleep requires a concurrent optimization of two objective functions, which together do not
correspond to the optimization of (a bound of) the marginal likelihood. There is no guarantee that
optimizing the Wake-Sleep objectives leads to a decrease in the free energy because:

(Choose 0-2 of the following choices)

A. The sleep phase trains the recognition model to invert the generative model for input vectors that
are distributed according to the generative model rather than according to the real data.

B. The sleep phase learning does not follow the correct gradient.

5

Solution

(1 pt) Between Wake-Sleep and AEVB, which algorithm(s) can be applied to models with discrete latent
variables?

Solution

(1 pts) (True or False) Wake-Sleep and AEVB have the same computational complexity per datapoint.

Solution

AEVB is an elegant way to link directed graphical models to neural networks, and is theoretically appeasing
because we optimise a (stochastic estimate of the) bound on the likelihood of the data. If the approximations
made while performing variational bayes are valid, the training algorithm is guaranteed to increase the
likelihood of the generative model. Moreover, there is a clear and recognized way to evaluate the quality of
the model using the log-likelihood (either estimated by importance sampling or lower-bounded).

For i.i.d. datasets with continuous latent variables per datapoint, posterior inference for AEVB can be
made especially efficient by fitting an approximate inference model (also called a recognition model) to the
intractable posterior using the proposed lower bound estimator.

1.5 An Alternate Lower Bound on the Log-Likelihood

To compare trained models, we could simply look at the values of the lower bound. However, the bound could
be loose and hence the numbers could be misleading. Here, we derive and prove a tighter approximation of
the lower bound on the marginal likelihood, defined as follows:

Lk(x) = Ez(1),...,z(k)∼qφ(z|x)

[
log

1

k

k∑
i=1

pθ(x, z
(i))

qφ(z(i) | x)

]
. (10)

(4 pts) Prove that log p(x) ≥ Lk(x) for any k ∈ N. (Hint : Use Jensen’s inequality.)

Solution

(4 pts) Prove that Lk+1(x) ≥ Lk(x) for any k ∈ N. You can use the following lemma without proof:

Lemma: Let Ik ⊂ [k + 1] := {1, . . . , k + 1} with |Ik| = k be a uniformly distributed subset of distinct
indices from [k + 1]. Then for any sequence of numbers a1, . . . , ak+1,

EIk
[∑

i∈Ik ai

k

]
=

∑k+1
i=1 ai
k + 1

(11)

Solution

6

The above two results show that
log p(x) ≥ Lk+1(x) ≥ Lk(x).

However, the above inequalities do not guarantee Lk(x)→ log p(x) when k →∞. (The proof is left as an
exercise to the reader. Or you can come to my office hours.)

1.6 Experiments (35 pts)

We provide a Jupyter notebook which already contains a working implementation of AEVB:

https://colab.research.google.com/drive/1nmPXgoNLUKxj-VTwB0l0956Swiv5jrVF

Please follow the instructions in the Colab notebook. All provided code will run as is, but you will also need
to complete the following TODO’s:

1. Implement the Wake-Sleep algorithm by modifying the provided AEVB code.

2. Implement the lower bound metric L100 for k = 100 as defined in Eq. (10).

3. Submit your modified .ipynb notebook on Gradescope.

You will use these implementations to complete the remaining sections.

1.6.1 Training

Train both Wake-Sleep and AEVB on the MNIST dataset for 100 epochs (using batch size 100.

If your Wake-Sleep implementation does not seem to learn a reasonable representation after 100 epochs, you
can train it for longer than 100 epochs. If you show that the Wake-Sleep training losses and Ltest

100 continue to
decrease past 100 epochs, and it yields better visualization results, then it would show that your Wake-Sleep
implementation is working, and you will still get full points. Report the number of epochs used to train your
Wake-Sleep model.

If you encounter nan’s even after adjusting your hyperparameters, the problem may be your loss implementation
that causes numerical instability issues.

(12 pts) For both Wake-Sleep and AEVB, plot Ltest
100 vs. the epoch number. To save computation time, you can

evaluate L100 every 10 epochs. Which algorithm converged faster? (Grading: 2 points for Wake-Sleep.
You can still get 10 points without implementing Wake-Sleep, if you implement Lk correctly. For each
algorithm, you can also get 3 extra credit points for plotting Ltrain

100 vs. the epoch number.)

Solution

(8 pts) For Wake-Sleep, also plot the training losses for the wake-phase and sleep-phase vs. the epoch number.
Specify the hyperparameters used, such as the learning rates for Wake-phase and Sleep-phase, and the
sample size used to compute the Monte Carlo estimate of the gradient for the Sleep objective.

Solution

7

https://colab.research.google.com/drive/1nmPXgoNLUKxj-VTwB0l0956Swiv5jrVF

1.6.2 Reconstructed Images

Next, we provide code that samples 100 MNIST images from the test set, uses the recognition network to
map them to latent space, then applies the generator network to reconstruct the images.

(5 pts) Run this code to visualize these reconstruction samples x̃(1), . . . , x̃(100) on a 10 × 10 tile grid. Also
visualize the original MNIST images x(1), . . . ,x(100) on a 10× 10 tile grid. Briefly compare the results
for Wake-Sleep vs. AEVB. (Grading: 2 points for Wake-Sleep, 2 points for AEVB, 1 point for comparing
the two.)

Solution

1.6.3 Latent Space Visualization (Part 1)

Since we have specifically chosen the latent space to be 2-dimensional, now we can easily visualize the learned
latent manifold of digits. We provide code that samples 5000 MNIST images from the test set, and visualize
their latent representations as a scatter plot, where colors of the points correspond to the digit labels.

(5 pts) Run this code to visualize the latent space scatterplot. Briefly compare the results for Wake-Sleep vs.
AEVB. (Grading: 2 points for Wake-Sleep, 2 points for AEVB, 1 point for comparing the two.)

Solution

1.6.4 Latent Space Visualization (Part 2)

Finally, we provide code that uses the generator network to plot reconstructions at the positions in the latent
space for which they have been generated.

(5 pts) Run this code to visualize the latent space reconstructions. Briefly compare the results for Wake-Sleep
vs. AEVB. (Grading: 2 points for Wake-Sleep, 2 points for AEVB, 1 point for comparing the two.)

Solution

8

2 Dissecting GANs (Hao) [35 pts]

We have covered Generative Adversarial Networks (GANs) in lectures. In this problem, we will rethink a few
building blocks of GANs. We will start with some simple proofs about the original GANs (section 2.1). Then
we will investigate the loss function of GANs (section 2.2), and extend it from two players to three players
(section 2.3). Lastly, we will compare VAEs with GANs on a few statements.

2.1 Warm-up: Optimality of GANs [9 pts]

Let us first introduce a few notations before we can start. In a typical GAN framework, we are interested in
learning a generator distribution pg over training data x. To parametrize pg, we introduce the generator G,
which is usually instantiated as a differentiable neural network. G maps input noise variables z ∼ pz(z) to
data space as G(z; θg) ∼ pg(x), where pz(z) is a prior of z. In order to train G (i.e. its parameters θg), we
define a second neural network D(x; θd), which takes a sample x as input, and outputs the probability that
x comes from the real data distribution pd(x) rather than pg(x). The training is conducted as follows: D is
trained to correctly classify samples from the training data as real, and samples from G as fake; simultaneously,
G is trained to generate samples as real as possible in order to fool D. In a mathematical form, we represent
the training as a minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pd(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (12)

Assuming both G and D have infinite capacity (i.e. under non-parametric assumptions).

[3 pts] Show that the optimization problem in Eq. 12 is equivalent with the following problem

min
G

C(G) = Ex∼pd(x)

[
log

pd(x)

pd(x) + pg(x)

]
+ Ex∼pg(x)

[
log

pg(x)

pd(x) + pg(x)

]
. (13)

Solution

[2 pts] Show that
C(G) = − log(4) + 2 · JSD(pd||pg),

where JSD is the Jensen-Shannon Divergence between two distributions.

Solution

[1 pt] What is the global minimum of the problem in Eq. 13? When will it be achieved?

Solution

The above results suggest that if we have perfect estimators of pg with infinity capacity, we shall be able to
match pd using GANs. At that point, we say the minimax game in Eq. 12 reaches its equilibrium.

In practice, we instantiate D and G using neural networks, which are often highly non-convex, and optimize
the NN parameters θg rather than pg itself. The objective can be optimized via gradient-based methods –
similar to VAE, a Monte Carlo estimate of the gradients can be obtained by sampling stochastic training
batches (from pd(x) and pz(z)), feeding through the neural networks, and performing backpropagation. Early

9

in learning, when G is poor, the optimization of G is problematic. Rather than training G to minimize
log(1−D(G(z))), we can train G to maximize logD(G(z)).

[3 pts] Explain what problem will be caused by a weak G and a strong D at training, and why maximizing
logD(G(z)) instead would be a better strategy.

Solution

2.2 Is the GAN Loss Really Good? [11 pts]

From the questions above, we noted that optimizing the GAN objective is essentially optimizing the JSD
between the generator distribution pg and the real data distribution pd. But is JSD really a good choice?

Consider the following three distance measures between two distributions p and q1:

• The Kullback-Leibler (KL) divergence

KL(p||q) =

∫
log
(p(x)

q(x)

)
p(x)dx.

• The JSD

JSD(p, q) =
1

2
KL(p||m) +

1

2
KL(q||m),

where m = 1
2 (p+ q).

• The Earth-Mover (EM) distance:

W (p, q) = inf
γ∈Γ(p,q)

E(x,y)∼γ ||x− y||,

where Γ(p, q) represents the set of all joint distributions γ(x, y) satisfying: ∀γ(x, y) ∈ Γ(p, q),
∫
y
γ(x, y)dy =

p(x) and
∫
x
γ(x, y)dx = q(y).

Now, consider the following two 2-dimensional distributions P and Q:

• ∀(x, y) ∼ P, x = 0, y ∼ Uniform(0, 1).

• ∀(x, y) ∼ Q, x = θ(0 ≤ θ ≤ 1), y ∼ Uniform(0, 1).

[5 pts] Calculate KL(P ||Q), KL(Q||P), JSD(P,Q) and W (P,Q).

Solution

[4 pts] Construct another two distributions P,Q where JSD(P,Q) is not differentiable with respect to the
parameters of P or Q.

Solution

[2 pts] Use the above examples to discuss the potential drawbacks of using JSD in the GAN framework.

1Assuming both p and q are properly defined probability measures on a compact metric set and are absolutely continuous.

10

Solution

In fact, the EM distance has been introduced as a (perhaps) better alternative of the JSD distance in the
orignial GAN objective.

2.3 The Third Player [10 pts]

A key disadvantage of GAN compared to VAE is that it lacks the ability of inference. In this section, we will
take a probabilistic review of GANs, from which, we derive an enhanced framework so that it is able to infer
the latent code of an observed x.

Recall the generative process in a GAN: z ∼ pz(z), x ∼ pg(x|z), where z ∼ pz(z) is a prior and pg(x|z) is
the conditional distribution defined by G. Similar to VAE, we now introduce an inference network Q, which
takes x as input, and infers its representation in the latent space. Q therefore parametrizes a distribution
pq(z|x) that approximates the posterior. Q, together with G, define two joint distributions from two different
directions:

• pr(x, z) = pd(x)pq(z|x)

• pf (x, z) = pz(z)pg(x|z)

In the original GAN, the discriminator D is designed to distinguish real samples x ∼ pd(x) from fake samples
x ∼ pg(x|z), and G and D are trained until an equilibrium of the minimax game is achieved. With the third
player Q introduced, we now enhance our D to distinguish pairs (x, z) from the distributions pf and pr, and
we hope pf and pr will match each other at the equilibrium of the following minimax game adapted from
Eq. 12:

min
G,Q

max
D

V (D,G,Q) = E(x,z)∼pr(x,z)[logD(x, Q(x))] + E(x,z)∼pf (x,z)[log(1−D(G(z), z))]. (14)

Intuitively, we can think the pairs (x, Q(x)) as real and (G(z), z) as fake, and a three player game is defined
– the discriminator D is trained to distinguish fake pairs from real pairs while the generator G and the
inferencer Q are jointly trained to fool D.

[2 pts] Given any G and Q, find the optimal discriminator of the minimax game in Eq. 14. Further, find the
global optimum of the problem in Eq. 14 and the condition when it will be achieved.

Solution

[6 pts] Show that at the equilibrium of Eq. 14 where G and Q are optimal and deterministic, G = Q−1 and
Q = G−1 almost everywhere.

Solution

[2 pts] Does the optimization of Eq. 14 have the similar problem as described in the last question in section 2.1.
If yes, design a better strategy to address the problem. If not, explain why.

Solution

11

With the third player introduced, we showed that GAN is amendable to modeling joint distributions and
supporting inference as VAE does, while still preserving nice theoretical properties.

2.4 Wrap-up: VAEs vs. GANs [5 pts]

Finally, let us wrap up this homework by looking at a few properties of VAEs and GANs. Below are a few
statements about VAEs and GANs. Judge each one as true or false, and explain your answers in detail.

[1 pt] Both VAEs and GANs are trained by maximizing the likelihood of training data.

Solution

[1 pt] Both VAEs and GANs are trained by minimizing the divergence between the data distribution and
the generator distribution.

Solution

[1 pt] Both VAEs and GANs define an explicit density function over the training data.

Solution

[1 pt] In image generation, VAEs tend to generate images that are sharper and of higher fidelity than GANs.

Solution

[1 pt] Both VAEs and GANs can be directly applied on modeling discrete data, such as text generation.

Solution

References

[1] Peter Dayan. Helmholtz machines and wake-sleep learning. Handbook of Brain Theory and Neural
Network. MIT Press, Cambridge, MA, 44(0), 2000.

[2] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

[3] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The “wake-sleep” algorithm for
unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

[4] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

12

	Variational Autoencoders (Lisa) [65 pts]
	Evidence Lower Bound Objective (ELBO)
	Wake-Sleep Algorithm
	Wake-phase
	Sleep-phase

	Autoencoding Variational Bayes (AEVB)
	Short-answer Questions
	An Alternate Lower Bound on the Log-Likelihood
	Experiments (35 pts)
	Training
	Reconstructed Images
	Latent Space Visualization (Part 1)
	Latent Space Visualization (Part 2)

	Dissecting GANs (Hao) [35 pts]
	Warm-up: Optimality of GANs [9 pts]
	Is the GAN Loss Really Good? [11 pts]
	The Third Player [10 pts]
	Wrap-up: VAEs vs. GANs [5 pts]

