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1. Introduction

Supervised classification algorithms have been very suc-
cessful in applications of many fields, with its impressive
performance and easy-to-train characteristic. In recent
years, the rise of deep learning techniques boosted the
performance even further. One of the largest limitations
of typical supervised learning, nonetheless, is that it is
only able to classify categories the model has seen before.
Worse still, in order to learn patterns of these specific
categories, the neural network model has to see sufficient
amount of data from the categories.

Zero-shot learning (ZSL) (Lampert et al., 2009) has been
an effective learning paradigm applied in the situation,
where some test classes unseen previously during training
are encountered during evaluation. The concept of ZSL is
significant, because in the real world, we usually cannot
collect sufficient data for each class, especially when the
number of classes is huge. In other situations, we may even
not be able to gain any relevant data for certain classes,
because of expensive cost and difficult accessibility. The
general idea of ZSL is to extract latent relationship shared
among both seen and unseen classes, so that the classifier
could assign the correct label to a newly seen object using
this transferred knowledge. The concept comes from the
intuition that humans not only identify objects of seen
classes by their observable features, but also using existing
knowledge.

However, most previous work (Frome et al., 2013) about
ZSL is evaluated only on samples of unseen classes. (Xian
et al., 2018a) proposed a generalized zero-shot learning
(GZSL) setting, where classes for test can be either seen or
unseen, which is more similar to real world applications.
It is validated that results of most ZSL algorithms under
GZSL setting become significantly lower than evaluated
under traditional ZSL setting, because seen classes in the
search space could distract the model from recognizing
images correctly.

In this paper, we focus on developing a novel model in the
problem settings of GZSL, which achieves better results
compared to previous methods.

2. Literature Survey

Researchers in ZSL community mainly focus on three
tasks:

1. Learn the mapping from image space to feature space.

2. Learn the representation of class in the semantic
space.

3. Learn the mapping from feature space to semantic
space.

The first task is closely related to deep-learning based
feature engineering, which is a classical task in computer
vision community. A large number of achievements have
been made using different types of convolutional neural
network (e.g., ResNet (He et al., 2016), VGG16 (Si-
monyan & Zisserman, 2014), DenseNet (Huang et al.,
2017)). There hasn’t been a mature pipeline, nevertheless,
for the second and third task. These two tasks have gained
significant attention from research communities in recent
years. Although these two tasks are equally important for
ZSL, the main division of existing ZSL methods depends
on how the second task is addressed, i.e., the representation
of class in the semantic space. There are three common
representations:  attribute description vectors, class
embeddings and entities in the knowledge graph.

The first paper on ZSL defined and formulated the task,
as well as proposed one solution of class representation
using attribute descriptions (Lampert et al., 2009). Each
class has an attribute description vector, which is a list of
identifications for several salient attributes of that class
(e.g., “black skin”, “eats grass”, “has stripes” for zebras).
Each identification clarifies whether the class has such an
attribute. The paper proposed two methods of modeling
the mapping between the feature space and the semantic
space: Direct Attribute Prediction (DAP) and Indirect
Attribute Prediction (IAP). Although the author does
not leverage deep learning model architecture to form the
mapping, the concept of knowledge transfer from low-level
visual features to semantic features is well illustrated.

The benchmark model of building semantic space based
on class embeddings was developed in 2013 (Frome et al.,
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Figure 1. Framework of Base Model

2013). From the concept, each class is represented by a
word vector, which could be trained using Skip-Gram or
CBOW model like pre-trained word embeddings in NLP
tasks. Then the visual feature vectors are projected to the
semantic space with the same dimension as pre-trained
class embeddings via a transformation layer. Then the
model computes the similarity between projected vectors
and class embeddings. Finally, the label of the class with
the highest semantic similarity with the visual features is
assigned to the image.

While there are many approaches to do zero-shot learning
with only image inputs, there will be more helpful if we
also have semantic information about classes (Xian et al.,
2018b). For example, we can train a GAN which synthe-
sizes CNN features conditioned on the class descriptors
to avoid cascading errors along the original process. To
achieve that, a Wasserstein GAN and a classification loss
are enough to learn the essential feature distributions about
each class given its semantic information.

Another intuition of solutions to the problem is to deter-
mine the similarity, or relevance between query images, to
help determine the class of asked instance. A relation net-

work can be trained to learn a deep distance metric (Sung
et al., 2018a). In that process, only very few instances
need to be provided, and we can input query images and
images of rare classes to get the relation distance. That
will not only help determine the rare classes, but also give
the model a general feeling about closeness of instances.
Although this is not strict zero-shot learning, this approach
is very intuitive and it is not hard to extend its power in the
scenario of zero-shot learning.

Attention mechanism is widely applied in sequence-based
models (Bahdanau et al., 2014), aiming to focus the
attention of the model on the most important part of the
sequence. Most of existing ZSL algorithms use all visual
features in the image to train the model, where much
irrelevant information for classification is incorporated
and may dampen the performance of the model. We
thus propose to use part locations to split the image
into local feature regions. Since we have the semantic
representations of classes, it is useful to learn the mapping
from feature space to semantic space with attention to most
relevant features for zero-shot classification. An attention
mapping is learned to map the relevance of local regions to
representations in semantic space.
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Fully aware of the fact that ZSL is still a relatively new
topic without benchmark of evaluation metrics, we need to
use the same evaluation metrics as used in previous work
which we want to compete with. This way, it is much
easier to compare the performance of different models and
further analyze the benefits and flaws of them.

3. Proposed Method
3.1. Base Model

(Sung et al., 2018b) uses an embedding module to map
both input images and class embeddings to a latent space
with the same dimension, and then uses a relation module
to concatenate two latent vectors and compute the final
relation score. In this approach, the intermediate repre-
sentations in the latent space lose specific meanings. We
want to explicitly represent the semantic information in
the latent space, because only in that way does the relation
matching done in the second module make sense in terms
of explainability. We take explicit attribute descriptions for
each image as our intermediate representations. We keep
the relation module to compute a relation score for each
class embedding - attribute description pair.

The architecture of our base model is shown in Figure 1
(the part inside the red box is related to calibration with
confidence, which will be stated in Section 3.2). Our
model basically consists of two modules: Attribute
Module and Relation Module. Attribute Module maps
the original image to attribute description representation.
It contains a Convolutional Neural Network (CNN) as a
sub-module to extract low-level features from the image.
Commonly used CNNs are ResNet (He et al., 2016),
DenseNet (Huang et al., 2017), etc.. The low-level features
are fed to a Multilayer Perceptron (MLP) to be converted
to an attribute description vector. In Relation Module,
the attribute description vector and the class embedding
vector are concatenated and fed to another MLP to obtain
a relation score. For training, we use the attribute loss for
Attribute Module and the classification loss for Relation
Module, separately. For inference or test, the attribute
description generated by the Attribute Module is fed to
Relation Module in pair with every class embedding in the
test set. The class with the highest relation score is the
predicted class.

3.2. Calibration with Confidence

At inference time, some attributes may not be visible in
certain images. (E.g., the tail of a bird is blocked by a
brick as shown in Figure 2). In such case, the attribute

.

Figure 2. Sample images where some important features (like tail)
are occluded.

value does not make any sense and we do not want to take
it into consideration. To address the case, we incorporate
the mechanism of calibration with confidence to our base
model. The confidence is defined as how much the model
believes in its predicted attribute values. We make Attribute
Module generate an additional confidence vector with the
same dimension as the attribute description vector. Then
what Attribute Module does is to predict an attribute de-
scription vector for each image and indicate to what extent
each attribute value is useful for classification of the image.

In Relation Module, we propose several approaches to ap-
plying calibration with confidence to the predicted attribute
description vectors.

3.2.1. HARD MASKING

We manually set a threshold for confidence scores. If
a confidence score is lower than the threshold, the cor-
responding attribute value should be discarded. But we
cannot remove those elements from the vector because the
input for Relation Module is required to be a fixed size.
We assume that the original attribute description vector
has d elements and we will discard n low-confidence
elements. We want to mask those values by blocking n
neurons in the first layer of Relation Module. In order to
block partial neurons without destroying existing semantic
meanings of other attribute values, we borrow the idea of
Dropout in deep neural network (Srivastava et al., 2014).
The idea is to scale up all weights in the first layer by a
factor 1/ after setting the value of n neurons to 0, where
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Figure 3. A toy example of mechanism masking out trivial fea-
tures (denoted by red cross). The value of the first hidden layer
would be scaled by to balance the network, where « is the frac-
tion of features that are masked out. The idea is borrowed from
dropout (Srivastava et al., 2014).

d;”, shown in Figure 3. Intuitively, the operation

masks non-confident attribute values by enhancing other
more confident attribute values. In the previous example, it
means that our model makes the decision relying more on
the visible attributes (special wings and feathers) but not
the occluded attributes (tails).

o =

3.2.2. SOFT MASKING

Instead of manually setting a fixed threshold for confidence
scores, a “‘softer” way is to pass the predicted attribute
description vectors and confidence vectors to Relation
Module. The idea is to make the model learn such
“threshold” or “masking criteria” from its own classifi-
cation performance during training. In other words, we
integrate the masking process into an End-to-End network
to encourage fine-grained and adaptive processing, which
may improve the model to some extent.

We modify the model architecture accordingly (see the red
box in Figure 1). For both hard masking and soft masking,
Attribute Module outputs an additional confidence vector
and is trained with an additional loss, which is confidence
loss. Relation Module takes in an addtional confidence vec-
tor concatenated with the attribute description vector and
the class embedding.

3.3. Multi-Attention Model

Attention mechanism has been applied to a wide range
of computer vision applications, including image clas-
sification (Xiao et al., 2015) and semantic segmentation
(Chen et al., 2016). Generally, the concept of an attention
model is to adaptively locate the most relevant information
to the task in the input (Wang et al., 2017). Here, we
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Figure 4. Model structure for Multi-Attention Model

believe that ZSL task will definitely benefit from the
attention mechanism, since human recognition of images
also involves such mechanism, where some features in the
image provides much more information for classification
than others. When more and more classes are considered,
capturing the difference of such key features between
classes undoubtedly helps classification. We apply the
mechanism here by making the model generate attention
detectors from the class embedding, and making it learn an
attention map from those detectors used for classification.

The model architecture is shown in Figure 4. Same with
the base model, we also pass the raw images through a
CNN to extract low-level features. Then we apply a local
feature encoder to get the visual feature encoding vectors.
Then the weighted pooling of these visual encoding vectors
{vi}™_, € R%is calculated under a set of attention maps
{a;}?_, to generate attention vector k € R, where n is
the number of visual encoding regions in one image. The
operation is defined as

k:Zaivi, kERd

For the attention weights a;, firstly the attention detectors
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h € R? are generated from the class embedding c:
h=Wc+b

where W € R?*¢ is the weight matrix and b € R? is
the bias, where c is the dimension of the class embedding.
Then the attention weights are calculated as

o ReLU(hTv;)
%= 3 ReLU(MTv,)

The attention values are normalized. Here ReLLU function
is applied after the dot product of h and v;, with an
intuition that the irrelevant information in the original
image whose attention weights are negative should be
ignored.

Furthermore, we also introduce the concept of multi-
attention by generating multiple sets of attention maps at
one time (Vaswani et al., 2017). Typically, the objective
of multi-attention is to describe an image from several
perspectives with different parts and contexts highlighted.
Additionally, it can reduce the risk of attending to incorrect
regions compared to using a single attention map.

By using multi-attention mechanism, we generate attention
vectors {k;}1L, where M is the number of attention heads.
The final aggregated attention vector K is defined as:

K:[k1k2 kM}

4. Experiments
4.1. Dataset

To evaluate our model, we use Caltech-UCSD-Birds
200-2011 (CUB 200-2011) (Wah et al., 2011) dataset. The
dataset contains 11,788 images of birds from 200 species.
150 species are used as seen classes during training and
the remaining 50 are used as unseen classes during test.
Under GZSL setting, test images should cover both seen
and unseen classes, so we combine the images of the 50
unseen species with part of the images of 150 seen species.
Thus we have 7,057 training images covering 150 seen
species and 4,731 test images including 2,967 images from
50 unseen species and 1,764 images from 150 seen species.

Along with the images and class labels, the dataset also
provides a 312-dimension class embedding for each of
200 classes. The class embedding is trained like word
embeddings on a large corpus in which the texts are
related to the corresponding class (Reed et al., 2016). It
implicitly encodes semantic information about the class.
Besides, the dataset provides a 312-dimension attribute

description vector for each image. Each element of the
vector represents an attribute of the bird (e.g., the colour
of the feather, the shape of the beak, etc.) and they only
take binary values. “0” means such attribute does not
exist while ”1” means the opposite. It is noteworthy that
attributes describing the same part of the bird are always
exclusive. Additionally, a certainty for each attribute value
is provided from statistical results of certainties given
by Amazon Turkers when they annotated the data. The
certainty takes 4 discrete values, indicating 4 levels of
confidence.

4.2. Metric

We have evaluation metrics for both traditional ZSL and
GZSL. We first define per-class accuracy Acco as the fol-
lowing:

Acce = I—é| Z Acce,
i=1

#(pred(ad)) == ye))
|Cil
where Accc, is the classification accuracy of the model on

test samples of class C;. Per-class accuracy is the average
of accuracy on all classes.

Acce, =

For traditional ZSL metric, we evaluate the model only on
unseen classes of test samples. We calculate the per-class
accuracy of the model on a U-way classification task,
where U is the number of unseen classes. The metric is
denoted as ZSL-T1.

For GZSL metric, we evaluate the model on both unseen
classes and seen classes of test samples. We first calcu-
late the per-class accuracy on unseen classes for a C-way
classification task GZSL-U, where C is the total number of
the unseen and seen classes in test data. We then calculate
the per-class accuracy on seen classes for a C-way classi-
fication task GZSL-S. We finally compute the harmonic
mean of GZSL — U and GZSL — S to get the final score
GZSL-H.

2xGZSL—-U xGZSL - S

ZSL—H =
Gz5 GZSL—-U+GZSL - S

4.3. Hyperparameters

For the base model, we use a 2-layer MLP for both
Attribute Module and Relation Module. For Attribute
Module, the size of the hidden layer is 1200 and the size
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Models ZSL-T1 GzsL
U S H
CONSE 343 1.6 722 3.1
DEVISE 52.0 23.8 53.0 328
SYNC 55.6 11.5 709 19.8
ESZSL 53.9 126 63.8 21.0
SAE 333 7.8 579 13.7
DEM 51.7 19.6 540 2838
ALE 54.9 2377 628 344
BM 47.9 173 498 25.7
BM (SRM) 48.6 17.7 492 26.0
BM (SRM)(End-to-End) 52.7 223 599 325
BM (SRM) + CC (Hard) 47.6 175 519 26.2
BM (SRM) + CC (Soft) 48.8 17.8 533 26.7

BM (SRM) + CC (End-to-End)

53.5 227 60.2 33.0

Table 1. Performance of Models under different ZSL metrics

of the output layer is 312. For Relation Module, the size of
the hidden layer is 300 and the size of the output layer is 1.
We choose the same CNN as in (Sung et al., 2018b), which
is ResNet-101 pretrained on ILSVRC 2012 1K classifica-
tion without fine-tuning. We take the top pooling units as
low-level feature vectors with dimension of 2048 for each
image. For activation function of all the hidden layers,
we use ReLU. We apply Sigmoid activation to the output
of Attribute Module and construct binary cross-entropy
as the attribute loss. We apply Softmax to the output of
Relation Module and construct T-way cross-entropy as
the classification loss, where T is the number of classes
in the training set (i.e., the number of seen classes). We
separately train Attribute Module and Relation Module.
We use Adam optimizer for both modules. We start with
an initial learning rate of le-4 and decay it by 0.5 for every
30000 iterations. We train the network for 1000 epochs
and saved the model with the best test accuracy.

For hard masking of calibration with confidence, we use
the threshold of 0.5 to filter confidence values. Other
hyperparameters are kept the same with the base model.

For Multi-Attention Model, we set M, the number of
attention heads to 4. Other hyperparameters are kept the

same with the base model.

4.4. Results

All of our results, compared to several previous repre-
sentative methods (Norouzi et al., 2013), (Frome et al.,
2013), (Changpinyo et al., 2016), (Romera-Paredes &
Torr, 2015), (Kodirov et al., 2017), (Zhang et al., 2017) and
(Akata et al., 2016) are shown in Table 1. (In the table,
BM is short for Base Model; SRM is short for Stochastic
Relation Matching; CC is short for Calibration with
Confidence.) The percent sign is omitted in the table.

4.4.1. BASE MODEL

From the results, our base model has a fairly good per-
formance, beating all the other previous methods except
DEVISE, DEM and ALE. Compared to these 3 methods,
our base model is defeated under all 4 metrics, so it seems
that there is large room for improvement of the base model.
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Figure 5. Confusion Matrix of Multi-Attention Model

4.4.2. STOCHASTIC RELATION MATCHING

When we look at the training process, we find that at early
stages, the accuracy increases quite slowly compared to
later stages. The reason may be that 150-way classification
is too difficult for the model to learn to perform. Inspired
from Stochastic Gradient Descent (SGD) (Robbins &
Monro, 1951), we propose performing stochastic relation
matching (SRM) at training time. Instead of using 150-way
cross-entropy as our classification loss for Relation Mod-
ule, we only consider the classes which exist in each batch
and construct a C-way cross-entropy as the classification
loss, where C is the number of classes involved in each
batch. Since we have C' < batch size, C-way classification
is much easier for the model to perform. The advantage
is that the model will capture more fine-grained similar-
ity/difference between classes as if it used a magnifier
to observe local objects. Since the involved classes vary
from batch to batch, the shifting average of this stochastic
version is a good estimate of the original one. The results
show that SRM really improves the base model by a little
bit. GZSL-H increases from 25.7% to 26.0%. We keep
using SRM in our later experiments.

4.4.3. END-TO-END TRAINING

End-to-End training is a popular technique in deep learn-
ing community. Basic idea is that our prior or inductive
bias about the model architecture will sometimes keep us
from achieving the optimal performance. Therefore, in-
stead of keeping several modules with different functions,
we treat the whole neural network as a blackbox and make
the model learn its best weights to fit the task by search-
ing the huge function space. Here we remove the attribute
loss and train both modules at the same time by backprop-
agating the classification loss through the whole network,
regardless of the semantic meaning of the vector in the in-
termediate space. It is surprising that both GZSL-U and
GZSL-S have a remarkable increase. It shows that having
explicit attribute description representations in the interme-
diate space does not help the model that much.

4.4.4. CALIBRATION WITH CONFIDENCE

From the results, hard masking of calibration with con-
fidence improves the model by 0.2% and soft masking
improves the model by 0.7%. Actually, soft masking is like
an End-to-End version of hard masking, which is expected
to work better.



Generalized Zero-shot Learning with Attention Mechanism

We also propose a more general End-to-End version of cal-
ibration with confidence. We do not even need to explicitly
represent confidence vectors. We just concatenate the
class embedding to the two vectors generated by Attribute
Module and pass the three vectors to Relation Module.
We see another significant improvement in terms of all
metrics. The result again show the strengths of End-to-End
training for improving the model.

Generally there is no much improvement brought by
calibration with confidence. The main reason is that the
confidence information is provided by Turkers, which will
have big variance if there are very few Turkers. Another
reason is that in most cases the attribute value has high
confidence and calibration is not necessary at all.

4.4.5. MULTI-ATTENTION MODEL

We achieves our best result using Multi-Attention Model,
which is highlighted in Table 1. Although on seen classes,
there is little improvement compared to other models,
Multi-Attention Model outperforms others on most unseen
classes, and achieves a higher GZSL-H score. We believe
the result benefits from the fact that the model captures
some significant information for classifying unknown
classes. Thus, we believe our model works in a reasonable
way to help classify unseen classes under GZSL setting.
We also plot the confusion matrix for our best model in
terms of GZSL metrics in Figure 5. The first 150 classes
are seen classes and the last 50 are unseen classes. We
can see a highlighted diagonal in the figure, which means
that most of classes are predicted correct in most cases.
Nevertheless, We see a fading of colour on the diagonal for
last 50 classes, which shows that the accuracy on unseen
classes is much lower than that on seen classes. The figure
shows the gap between the performance on seen classes
and that on unseen classes, which is yet to be narrowed.

5. Conclusion and Future Work

In general, the models we propose achieve higher clas-
sification accuracy on unseen classes, leading to a better
GZSL-H score compared to most of previous methods.
Among all the approaches we proposed, Multi-Attention
Model performs the best in terms of GZSL-H.

Note that in our approach of calibration with confidence,
the confidence vector can be viewed as a conditional rep-
resentation. Thus, the idea of feature-wise transforma-
tions(Perez et al., 2018) can be applied here. For the future
work, we will incorporate Feature-wise Linear Modulation

(FiLM)(Perez et al., 2018) into Relation Module. In addi-
tion, we maintain a single Relation Module for all classes
(seen and unseen) currently. We want to adapt the con-
cept of Parameter Generation (Platanios et al., 2018) here
and create a generalized parameter generator to generate
parameters for classifier of each class given class embed-
dings.
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