
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

10-708 Project Final Report: Randomized Deep Learning Models
against Adversarial Attacks

Zhuoran Liu, Ninghao Sha1

1. Introduction
Modern deep learning architectures have received critical
acclaim of their performance in learning a broad spectrum
of tasks, such as object recognition, speech processing, text
generation, and modeling complex systems. Sitting at the
core of this domain is the challenge of deploying robust
models for industrial application: different from a research-
driven environment where datasets are well-prepared, data
acquisition in real world is often vulnerable to adversarial
attacks. Unfortunately, it has been shown that machine learn-
ing models are typically susceptible to artificially perturbed
adversarial samples [(Dalvi, 2004)]. Such an example is
provided in figure 1.

Figure 1. An injection of noise can cause a CNN classifier to mis-
classify a panda to gibbon, with no visible change to the original
image.

Adversarial examples become particularly problematic in
security sensitive domains, such as autonomous driving.
In order to develop models that are robust to adversarial
examples, it is necessary to know the enemy. Thus, we will
first introduce existing approaches to generate adversarial
samples, followed by an analysis of current state-of-the-art
models for adversarial learning.

2. Literature Review for Adversarial Attacks
Here we assume that the goal of the adversary is to come
up with examples that are perceptually indistinguishable
from clean inputs but mis-classified by the target model.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

The most common recipe for a white-box adversarial attack
example includes a clean input, the target model in training
mode with accessible gradients. After a forward pass, gradi-
ents of an adversary-defined objective are back-propagated
onto the clean input, revealing the adversarial perturbations
that would confuse the model once added to the input. Such
white-box gradient-based adversarial examples can be gen-
erated either by taking a single step along the gradient (one-
step methods) or taking steps iteratively until some stopping
criterion is met (iterative methods). [(Kurakin et al., 2016a)].
On the other hand, we also have black-box adversarial at-
tacks, which requires much less information and therefore is
much more accessible in real-world setting. In the black-box
setting, the adversaries can easily craft adversarial examples
even without any internal knowledge of the target network.
In our experiment section, we evaluate the robustness of
different model architectures against two white-box attacks,
Fast Gradient Sign Attack(FGSM) and Deep Fool Attack,
and one black-box attack named LocalSearch. A brief re-
view of each attack mentioned above, and also some related
works on adversarial attacks will be discussed below.

Define the loss L(X, ytarget) as a function of input X and
its target label ytarget, which regular, non-adversarial train-
ing tries to minimize. The adversary could choose to maxi-
mize L(X, ytarget), tweaking the input such that the model
is less likely to classify it correctly. The fast gradient sign
method (FGSM) proposed in [(Goodfellow et al., 2014)]
generates adversarial examples by taking a single step:

Xadv = X + εsign(∇XL(X, ytarget))

where the size of the perturbation ε is often subject to some
restrictions [(Kurakin et al., 2016a)]. A common imple-
mentation of the FGSM attack is to gradually increase the
magnitude of ε until the image is misclassified. Its itera-
tive extension named basic iterative method is specified in
[(Kurakin et al., 2016b)] and has the following update rule:

Xadv
0 = X,

Xadv
N+1 = ClipX,ε

{
Xadv
N + αsign(∇XL(Xadv

N , ytarget))
}

where α regulates the size of update on each step and the
total size of perturbation is capped at ε using ClipX,ε 1.

1Here we borrow the notation from (Kurakin et al., 2016a).

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2019

The DeepFool attack used in our experiment is another it-
erative attack with also takes into account the L2-norm of
the gradient when computing the update rule. The original
paper suggests that the proposed method generates adver-
sarial perturbations which are hardly perceptible, while the
fast gradient sign method outputs a perturbation image with
higher norm. Such pattern is observed on both MNIST and
CIFAR-10 dataset using the state-of-the-art architectures.

Algorithm 1 DeepFool Algorithm
DeepFool Algorithm(binary case)
Initialize x0 ← x, i← 0
While sign(f(xi)) = sign(f(x0)) :

ri ← f(xi)
||∇f(xi)||22

∇f(xi)
xi+1 ← xi + ri
i← i+ 1

All methods mentioned above use information about the true
label ytarget while generating adversarial examples from
clean ones, making these attacks potentially defective due
to the ”label leaking” phenomenon discussed in [(Kurakin
et al., 2016a)]. The adversary could also choose not to
reveal ytarget by providing a misleading ”target” yfalse in
the objective. The one-step target class method tweaks
the input by a single update such that the model is more
likely to output the falsified target:

Xadv = X − εsign(∇XL(X, yfalse))

The heuristics of choosing yfalse varies but [(Kurakin et al.,
2016b)] suggested picking yfalse to be the least likely model
output given the clean input. The iterative least-likely class
method follows that heuristics and is the iterative counter-
part of the one-step target class method:

Xadv
0 = X (1)

Xadv
N+1 = ClipX,ε

{
Xadv
N − αsign(∇XL(Xadv

N , yfalse))
}

(2)

Besides calculating a global perturbation on the entire in-
put, in the context of image classification, [(Papernot et al.,
2015a)] also proposed an algorithm that greedily searches
for the pixel that would fool the model the most once modi-
fied. All of the above-mentioned strategies require access of
model gradients to generate adversarial samples. In real life
the adversary may or may not have access to gradients of the
target model. However, the above methods could be used on
a surrogate model, and the adversarial examples produced
using the surrogate could frequently trick the target model
due to a property called transferability.

ClipX,ε(A) clips A element-wise such that Ai,j ∈ [Xi,j −
ε,Xi,j + ε].

In the case of black-box attack, the adversaries do not have
access to model architecture and therefore has no internal
knowledge of the target network. These kind of methods
treat the network as an oracle and only assumes that the
output of the network can be observed on the probed inputs.
The LocalSearch attack is accomplished by carefully con-
structing a small set of pixels to perturb by using the idea
of greedy local search. This is an extension to a simple ad-
versarial attack, which is randomly selecting a single pixel
and apply a strong perturbation to it in order to misclassify
the input image. The LocalSearch attack is also an iterative
procedure, where in each round a local neighborhood is
used to refine the current image and in process minimizing
the probability of the network assigning high confidence
scores to the true class label. This approach identifies pixels
with high saliency scores but without explicitly using any
gradient information.

3. Methods for Defensing Against Adversaries
On the defenders’ side, proposed measures against adver-
sarial attacks include input validation and preprocessing,
adversarial training, defensive distillation and architecture
modifications. We review some existing methods and dis-
cuss how randomized training/models such as stochastic
delta rule could increase model robustness against adver-
saries.

Adversarial Training

Adversarial training increases model robustness by feeding
in adversarial examples to the model during training. The
standard practice is to generate adversarial examples from a
subset of the incoming batch of clean inputs on the fly. The
model is then trained on the mixed batch of clean and adver-
sarial inputs. However in order to do that, a specific method
for generating adversarial examples must be assumed, pre-
venting adversarial training from being adaptive to differ-
ent attack methods. For example, (Kurakin et al., 2016a)
showed that models adversarially trained using one-step
methods are fooled easily by adversarial examples gener-
ated using iterative methods; models adversarially trained
using a fixed ε could even fail to generalize to adversarial
examples created using different ε values.

Defensive Distillation

Distillation was originally proposed in the context for model
compression, aiming to transfer learned knowledge from
larger, more complex models to more compact and compu-
tationally efficient models [(Hinton et al., 2015)]. Defensive
distillation was first proposed by [(Papernot et al., 2015b)]
as a training regime to increase model robustness against
adversaries. The goal of defensive distillation is not transfer
learning as how distillation was originally proposed, but
rather to train models to have smoother gradient surfaces

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2019

with regard to the input – such that small steps in the in-
put space do not change model output significantly. While
smoothing out the gradients that adversaries usually use
to create adversarial examples is effective in the setting
shown by the original paper, [(Carlini & Wagner, 2016)]
pointed out that Papernot’s attack assumed by [(Papernot
et al., 2015b)] could miss out potentially strong attacks and
that models trained with defensive distillation possess no
advantage against a modified version of Papernot’s attack
when compared to regularly trained models. Works such
as [(Belagiannis, 2018)] investigates the effect of network
compression solely for the purpose of transferring model
knowledge, but discovers the effect of robustness against
adversaries as a side product.

Randomized Methods & Models

Randomized training methods seek to improve the robust-
ness of deep models by introducing randomness, irrespec-
tive of benign or adversarial samples, during the training
process. For example, [(Xie)] introduces a random resizing
layer and/or zero-padding layer prior to the regular architec-
tures of CNNs. Through extensive experimental evaluation,
the authors discovered that this method is particularly effec-
tive against iterative attacks, while other methods introduced
above are better at handling single-step attacks. A combi-
nation of both methods, as the authors argue, achieve best
performance against arbitrary adversaries.

4. Baseline Randomized Model: DropConnect
DropConnect is a generalization of Dropout layer for regu-
larizing large fully-connected layer within neural network.
In the case of Dropout layer, a random set of outputs from
the activation layer are muted in order to force the network
to learn more robust features. A random subsets of the
weights within the fully-connected layers are set to zero.
The input features are then multiplied by this randomized
weight matrix before passing through the activation. Figure
2 and 3-5 are the visualization of the DropConnect architec-
ture, and a comparison among the regular fully-connected
network, a Dropout network and a DropConnect network.

Figure 2. DropConnect Architecture

Figure 3. Regular full-connected network

Figure 4. Dropout network

Figure 5. DropConnect network

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2019

5. The Stochastic Delta Rule
In this section, we provide the specifics of our proposed
SDR training routine, along with its fine-grained variant.
Along this trajectory, we will raise the issue of practical
implementation concerns, the connection between SDR and
regularization, and a qualitative explanation of feasibility
of SDR-augmented training routine in improving model
generalizability and robustness against adversaries.

First introduce in [(?)], SDR is revisited under the deep
learning setting in [(Frazier-Logue & Hanson., 2018)]. Dur-
ing the forward pass of a SDR-equipped model, a parameter
wj is not regarded as fixed values, but are rather random
variables sampled from an arbitrary distribution specified
by parameters θj . The choice of such distribution is arbi-
trary. For the purpose of our experiments, we assume that
model parameters follow a normal distribution, and are in-
dependent with each other. At training iteration t, a model
with the SDR training routine samples model parameters
w(t) ∼ N(µ(t),Σ(t)), fit the current batch with respect to
the sampled parameters, and perform the following updates:

µ(t+1) ← µ(t) − α∇wL(X, y,w(t))

Σ(t+1) ← Σ(t) + β|∇wL(X, y,w(t))| (3)

where α, β are step sizes for the mean and variance re-
spectively. On one hand, it can be readily observe that
with β = 0 and zero-intialization of the covariance matrix,
only the mean parameters are updated, and we recover the
training routine without SDR. On the other hand, [(Frazier-
Logue & Hanson., 2018)] states that sampling parameters
from a binomial distribution with mean Dp and variance
Dp(1 − p), SDR could be regarded as a special case of
dropout with probability p, only in this case the variance is
not updated with respect to information gathered from the
gradients.

5.1. SDR Update with Scheduled Variance Decay

The first SDR training routine we consider is termed
SDR-Decay, formally presented in algorithm 5.1. In this
algorithm, aside from controlling parameter variances by
end-to-end updates with∇w∂L(X, y,w), we further anneal
the variance by ζ to ensure asymptotically decaying vari-
ances. As training progresses, we shrink the variance so as
to sample progressively concentrated parameters around the
mean. We further introduce the decay schedule, τ , to avoid
over shrinkage and allow sufficient exploration of our model
within the parameter space. At test time, we compute the
forward pass of our model directly with parameter means.

Algorithm 2 SDR-Decay
input dataset {(Xi, yi)}ni=1, decay schedule τ , decay rate
ζ ∈ (0, 1], batch size B
Initialize model parameters µ(0,0),Σ(0,0)

num-batches← n//B
for e = 1, 2, · · · until convergence:
for b = 1, 2, · · · ,num-batches
Sample batch parameter weights w(b,e) ∼ N(µ(b,e),Σ(b,e))
Compute forward pass of network with respect to w(b,e)

Perform SDR parameter updates with respect to equations 3
If b%τ = 0: Σ(b,e) ← ζΣ(b,e)

End for
End for

Figure 6. Reparameterization trick of SDR-Decay update

5.2. Reparametrization Trick

With this formulation of the update rule, we require the loss
function to be differentiable with respect to the parameters
µ and Σ. However, the loss value is computed based on
realizations of many random variables along the forward
pass, which are not explicitly differentaible with respect to
their parameters. In order to combat this issue, we use the
reparametrization trick, as illustrated in figure 6, to make
the network capable of backpropagating through random
nodes. This technique essentially transfers the undetermin-
istic nature of the weight to another source of randomness,
which then allows the randomly generated weights to be dif-
ferentiable with respect to its parameters. This trick is most
known for its application in Variational Autoencoder(VAE).
Essentially we want to sample each weight from its posterior
distribution, say q(z|φ, x), where x denotes the data and φ
denote the parameters in the distribution, which need to be
updated during the training process. The problem at hand is
that we want to compute

∇φEz∼q(z|φ,x)[f(x, z)]

. This is similar to a score function estimator used in re-
inforcement learning, which has a high variance and very
often leads to difficulties in model learning. In order to
compute this term, we typically utilize estimation method
like Monte-Carlo to derive an estimate, instead of direct
back-propagation.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2019

In order to alleviate this learning issue, the reparametriza-
tion trick is often used, which allows us to estimate qφ(z|x)
as a two-stage process. First, we sample a noise variable ε
from some common distribution(usually the standard nor-
mal). Then we create a deterministic transformation gφ(z|x)
which allows us to map the generated random noise to a
more complex distribution(for example a generalized nor-
mal distribution). For most commonly seen distributions,
such mapping indeed can be found. For example, suppose
the posterior distribution of a weight follows the following
distribution:

z ∼ qφ(z|x) ∼ N(µ, σ)

. Now instead of directly samping from qφ(z|x), we gen-
erate the random variable by applying a transformation on
ε:

z ∼ µ+ ε ∗ σ

. With this transformation, we can rewrite the gradient term
we need to compute in a more estimation-friendly form:

∇φEz∼q(z|φ,x)[f(x, z)] (4)
= Eε∼p(ε)[∇φf(x, gφ(ε, x))] (5)

An important observation is that now the expectation is
with respect to the distribution of the random noise, and
is independent of the gradient parameter φ. Therefore we
can put the gradient directly inside the expectation. The
variance of this new form of gradient estimation is much
lower, which greatly improves the efficiency of the training
process.

5.3. SDR Update with Learnable Variance

Algorithm 5.1 updates parameter means and variances with
∇w∂L(X, y,w), requiring backward pass on only one set
of parameters w for each batch. We can, however, let
both means and variances be fully learnable and have them
updated with ∇w∂L(X, y,w) and ∇Σ∂L(X, y,w) respec-
tively. The resulting algorithm, termed SDR-Learnable,
produces a more realistic learning paradigm that approxi-
mates the behavior of variable parameters with higher fi-
delity. The drawback of such approach, of course, is dou-
bling the computation required to compute the gradients. At
test time, we sample parameters from learned means and
variances, and perform inference on input data with sampled
parameters.

5.3.1. SDR-LEARNABLE IN ADVERSARIAL LEARNING

The inference procedure of SDR-Learnable produces
variable predictions with same inputs, which motivates us to
investigate its robustness against adversarial samples. Our
qualitative motivation for this hypothesis is as follows: ad-
versarial attacks are designed to lead models to mis-classify,
while inducing no recognizable changes to inputs subject

to human examination. For example, an adversarial image
of a digit in the MNIST dataset should be very close nu-
merically to its original counterpart, as suggested by figure
7. Thus, the decision surface of a model should not only
cater to singular data points provided in training data, but
also a vicinity region in the sample space sharing similar
topologies.

Figure 7. Left: an image of digit 7 from the MNIST dataset; right:
an adversarial image of the said image, generated with FGSM
attack on a trained MLP for this project

The variable treatment of parameters in SDR-Learnable
is a step towards defensive strategies in two aspects: (1).
the most effective gradient attack direction is computed
with respect to one sampled parameter instance, and is less
effective for another; (2). instead of fitting data at singular
points, models with variable parameters create a decision
region subject to parameter distribution, hence allowing
more robust prediction against adversarial samples.

5.3.2. SDR-LEARNABLE IN GENERALIZATION

The description of decision regions, rather than spiky predic-
tions, of SDR-Learnable naturally lead us to investigate
its relationship to model generalization. In particular, we
are interested in whether the inclusion of variable model
parameters improves out-of-sample performance, and how
do variances behave as training progresses. We present the
following theorem as a first step towards the analysis.
Theorem 1. Let X ∈ RN×D and y ∈ RN be fixed, and
w ∈ RD be a random vector with E[w] = µ, Cov[w] = Σ,
then the risk of a linear regression model ŷ = Xw takes the
form

Ew[||y −Xw||2] = ||y −Xµ||2 + ||XΣ1/2||2

Proof. With simple algebra of expectation, we observe that

Ew[||y −Xw||2] = ||y||2 − 2yTXEw[w] +

N∑
i=1

Ew[(XT
i w)2]

= ||y||2 − 2yTXEw[w] +

N∑
i=1

(
Var[XT

i w] + (XT
i Ew[w])2

)
= ||y||2 − 2yTXµ+

N∑
i=1

(X2
i µ)2 +

N∑
i=1

XT
i ΣXi

= ||y −Xw||2 + ||XΣ1/2||2.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2019

It can be readily observe that under the stylized linear regres-
sion model, SDR-Learnable is equivalent to regularizing
parameter variances Σ with penalty matrix X . In neural net-
work training, we expect that the the L-2 norm of Σ to
decay progressively, hence leading to more concentrated
parameter samples. Notice that the decay step Σ ← ζΣ
in SDR-Decay is a step towards artificial control of the
magnitude of parameter variances, mimicing the behavior
of SDR-Learnable.

However, it is noteworthy that the parameter distribution
does not necessarily lead to better generalization. Thus,
aside from performing inference on one set of sampled
parameters at test time, we inference for arbitrary number
of times, and take the majority vote of these predictions.

6. Experiments & Results
So far, we have explored qualitative and theoretical aspects
of SDR-based routine for learning deep neural networks.
In the experiment section, we will further evaluate the effi-
cacy of SDR in model generalization and robustness against
adversarial samples. We will also verify the regularization
effect of parameter variances in SDR-Learnable, and
explore the relationship between prediction accuracy and
adversarial robustness. Implementation of baselines and
SDR related models can be found on our github repository:
https://github.com/ssandyshaa/SDR.

6.1. SDR in Model Generalization

We evaluate the convergence property of SDR-Decay and
SDR-Learnable on three datasets: MNIST, Sequential
MNIST, and CIFAR-10, with MLP, LSTM, and ResNet-18
architectures respectively. All of our subsequent experi-
ments on conducted on these datasets and models, with
details provided in the table 1.

We train all models for 20 epochs with batch size of 64 on a
GeForce RTX 2080 GPU, using the Adam optimizer with a
learning rate of 0.001. For the SDR-Decay learning rou-
tine, we let β = 0.05 and ζ = 0.7, with parameter variance
decay applied twice per epoch. Due to time constraint, we
only conducted experiments of SDR-Learnable on MLP
and ResNet, with majority votes taken from 50 ensembles
per input. The plots of validation accuracies are shown in
figure 8 and best performance shown in table 1.

As we can readily observe, SDR-Decay outperforms
vanilla method in terms of out-of-sample accuracy and con-
vergence behavior for ResNet and LSTM. We have rea-
sons to believe that the parameter distribution in the decay
method is encouraging our model to explore different opti-
mums, thus leading to better overall performance.

Figure 8. Validation accuracies for: MLP for MNIST (left),
ResNet-18 for CIFAR-10 (middle), LSTM for Sequential MNIST
(right)

SDR-Learnable with ensemble tops the MLP digit clas-
sification task. In this case, we observe that learnable meth-
ods is capable of producing smoother accuracy curves than
vanilla and decay methods, which suffer from a performance
drop around 15 epochs. Nonetheless, SDR-Learnable
suffer from a significant performance drop while learning
with ResNet-18, which could be attributed to the doubling
of learnable parameters in this setting (∼ 11m→∼ 22m).
In this case, 20 epochs of training may not suffice to guaran-
tee convergence behavior of parameter variances. However,
through taking majority vote of ensemble networks, we re-
cover true parameters mean with Law of Large Numbers,
and thus remedy the ensemble method to beat the vanilla
method by a significant margin.

Overall, we learn that SDR-Decay is capable of signif-
icantly improving model performance with no additional
GPU computation, with SDR-Learnable performing on
par in smaller networks, such as a MLP. The latter suffer
from a performance drop in larger networks, which can be
remedied by taking majority vote of ensemble predictions.

https://github.com/ssandyshaa/SDR

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2019

Table 1. Model specification for experiments
Model Architecture Activation Vanilla Decay Learnable Ensemble
MLP 784; 100; 100; 100 ReLU 98.28 98.27 97.93 98.39

ResNet-18 As in [7] ReLU 71.6 81.53 70.72 76.43
LSTM 784; 130 ReLU 87.8 91.3 89.7 90.6

6.2. SDR in Adversarial Learning

We conducted our experiments on the MNIST dataset. We
tested 4 models: vanilla 3-layer MLP, 3-layer SDR-decay
MLP, 3-layer SDR-Learnable MLP and a 3-layer Drop-
Connect MLP with a drop probability of 0.2. Notice that
in Algorithm 2, we shrink the parameter variance by ζ in
order to mimic the regularizing behavior demonstrated in
Theorem 1. The model specifics are listed in Table 2.

We trained all four models using regular samples of
MNIST and obtained validation prediction accuracy.
The SDR-Learnable model achieves a slightly lower
accuracy(∼ 2%) than the other three models, which is not
surprising given the additional source of randomness in the
inference phase. However, its prediction accuracy on adver-
sarial samples is far more superior than all the other models.
On these adversarial samples, the SDR-Learnable MLP
achieves almost the same prediction accuracy as on the
uncontaminated dataset, while the other models are very
vulnerable to such attack. The results are summarized in the
following table:

Despite previous experiments being conducted only on fully
connected layers, Stochastic Delta Rule is easily generalized
to other layer architecture, such as convolution layers. We
thus modified the convolution layer in the Resnet18 model
and trained it on the CIFAR dataset. However the accu-
racy we obtained is about 10 percent lower than the regular
Resnet18. Therefore we need to figure out a heuristic to
control the randomness in the inference phase before testing
model robustness against adversaries.

6.3. Variance Shrinkage Effect of SDR-Learnable

Theorem 1 states that as training progresses, parameter vari-
ances shrinks asymptotically, leading to more concentrated
parameter instances. However, our previous experiments
indicate that models with lower uncertainty (in terms of pa-
rameter variance) leads to more accurate prediction, but are
more sensitive to adversarial attacks. This behavior suggests
a trade-off between these two objectives. In this section, we
verify empirically that variance decay holds, followed by
an investigation of classification accuracy vs. adversarial
accuracy along training.

Figure 9 verifies our hypothesis. Specifically, we observe
that the cumulative parameter variance is progressively de-
creasing along training, despite both encountering saddle

Figure 9. Cumulative sum of parameter variances for MLP (first)
and ResNet-18 (middle), and classification accuracy on validation
set and FGSM adversarial samples for CIFAR (last)

points at around 15 epochs. The magnitude of variance for
CIFAR is also much larger than that of MNIST (40-60 vs.
14-18), introducing a greater degree of variability in making
predictions.

To further investigate this trade-off, we apply FGSM method
on the trained ResNet-18 model after each epoch, and gener-
ate 20 sets of adversarial images, each containing the same
1000 samples from the CIFAR-10 validation set. We then
evaluate classification accuracies on the adversarial samples
against validation accuracies, as plotted in the right subplot
in figure 9. As training progresses, we observe a widen-
ing gap between the validation curve and the adversarial
curve, which confirms our hypothesis that sharper distribu-
tion leads to higher out-of-sample performance at the cost
of robustness against adversarial examples.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2019

Vanilla MLP SDR-decay MLP Learnable SDR MLP DropConnect
Regular Samples 97.59% 97.55% 95.55% 97.95%

FGSM Attack 0% 4.61% 94.86% 45.9%
DeepFool Attack 0% 3.87% 40.15% 45.48%

LocalSearch Attack 0% 2.85% 40.15% 26.53%

Table 2. Model performance without and under adversarial attack.

7. Conclusion
In this project, we revisited the classical stochastic delta rule
(SDR) and performed an evaluative study on its performance
in out-of-sample prediction and robustness against adver-
sarial samples. Our results have shown that SDR-Decay,
an update rule which performs both parameter updates with
gradients with respect to mean, leads to superior perfor-
mance in terms of convergence and classification accuracy
with minimal extra computation cost. On the other hand, the
fully learnable paradigm SDR-Learnable demonstrates
extraordinary robustness against adversarial samples, at the
cost of lower prediction accuracy. To remedy this loss, we
propose an ensemble method which predicts based on the
majority vote of predicted instances, which yields higher
prediction accuracy but lower adversarial accuracy. This last
observation leads us to investigate empirically the trade-off
between out-of-sample performance and adversarial robust-
ness.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2019

References
Belagiannis, Vasileios, e. a. Adversarial network compres-

sion. arXiv:1803.10750, 2018.

Carlini, N. and Wagner, D. A. Defensive distilla-
tion is not robust to adversarial examples. CoRR,
abs/1607.04311, 2016. URL http://arxiv.org/
abs/1607.04311.

Dalvi, Nilesh, e. a. Adversarial classification. Proceedings
of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2004.

Frazier-Logue, N. and Hanson., S. J. Dropout is a special
case of the stochastic delta rule: faster and more accurate
deep learning. arXiv:1808.03578, 2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and Harnessing Adversarial Examples. arXiv e-prints,
art. arXiv:1412.6572, Dec 2014.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial
machine learning at scale. CoRR, abs/1611.01236, 2016a.
URL http://arxiv.org/abs/1611.01236.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Ad-
versarial examples in the physical world. CoRR,
abs/1607.02533, 2016b. URL http://arxiv.org/
abs/1607.02533.

Papernot, N., McDaniel, P. D., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. The limitations of deep learning in
adversarial settings. CoRR, abs/1511.07528, 2015a. URL
http://arxiv.org/abs/1511.07528.

Papernot, N., McDaniel, P. D., Wu, X., Jha, S., and
Swami, A. Distillation as a defense to adversarial
perturbations against deep neural networks. CoRR,
abs/1511.04508, 2015b. URL http://arxiv.org/
abs/1511.04508.

Xie, Cihang, e. a. Mitigating adversarial effects through
randomization. arXiv:1711.01991.

arXiv:1803.10750
http://arxiv.org/abs/1607.04311
http://arxiv.org/abs/1607.04311
arXiv:1808.03578
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1511.07528
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1511.04508
arXiv:1711.01991

