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Abstract
Child protection agencies across the US are rou-
tinely tasked with the screening millions of cases
in order to identify those that are likely to re-
sult in adverse outcomes. To help with this task,
many agencies have implemented and deployed
risk prediction models that use administrative
data in order to aid call workers. Nonetheless,
the use of these predictive models for child wel-
fare has proven onerous, raising concerns that
go from how to validate their efficacy, to how
to guarantee the fair treatment of disadvantaged
groups. In particular, one concern that has in-
spired significant recent work is the fact that
the variable of interest is never observed: we
never see what happens to a child if the case was
not investigated. In this work, we propose to
tackle this obstacle by using unsupervised meth-
ods to discover latent risk structures in the agen-
cies’ administrative data, completely bypassing
the “missing labels” predicament. We formulate
two different risk models (with and without time
dependencies among calls) and show (1) that the
risk structures learned by both models are mean-
ingful for experts, and (2) that taking into ac-
count time dependencies ends up hurting the per-
formance on downstream predictive tasks.

1. Introduction
Machine learning algorithms have been used to improve
and understand human decision in social contexts, and ev-
idence suggests they can help to achieve better outcomes
than unassisted human-decision makers (Kleinberg et al.,
2017; Chouldechova et al., 2018). These algorithms are
particularly helpful in settings where there is a wealth of
information; too much for the human-decision maker alone
to sift through. Such is the case for child welfare screen-
ing decisions in Allegheny County, Pennsylvania, where
hot-line call screeners have to decide whether to “screen-
in” a call for investigation based on the allegation and the
county records for all parties associated with the allegation
(i.e. child, parent, alleged perpetrator). Chouldechova et al.
(2018) built a risk assessment tool to aid the call-screeners

with this decision, and our work aims to upon their risk
modeling by using unsupervised methods to discover latent
risk structures in the child welfare data.

For child welfare screening, unlike standard classification
problems, we do not observe the variable of interest. The
variable of interest is the risk of harm to child under no in-
vestigation (i.e. screen-out) since assessment of this risk
leads to optimal treatment assignment: If the child is safe
from harm under screen-out, then there is no reason to
spend county resources investigating the case. If the child
is suffering or at risk of harm, then the county should open
an investigation to determine how to mitigate this risk; such
recourse may include offering services to support the fam-
ily or in the extreme case, placing the child out-of-home.
However, we have no labelled data on child harm under
screen out. Prior work has used rereferral to the hotline at
a later time as noisy proxy for child harm. This is noisy
since there are reasons a call may be re-referred that do not
reflect child harm. Prior work has also used placement out-
of-home as a proxy for child harm under investigation. We
note that the latter is not the same as the outcome of inter-
est since the effect of investigation may mitigate the risk of
harm.

We propose using unsupervised methods to discover latent
risk structures for child welfare screening. We use Latent
Dirichlet Allocation (LDA) to model latent risk types, and
we extend LDA to include time dependencies in a dynamic
topic model. We assign semantic meaning, such as pattern
of child abuse and substance abuse to the topics learned in
the standard and dynamic LDA models. The advantage of
our approach is that we bypass the missing labels problem
and we learn a feature representation that is interpretable by
practitioners. The drawback is that we cannot fully validate
our results. We use re-referral and placement outcomes to
perform sanity checks for our models. While these out-
comes are not sufficient to properly validate the model, we
can use these models in conjunction with expert knowledge
of the child welfare process to determine whether the model
finds a meaningful representation of risk.

1.1. Project Objective

The objective of this work is to investigate whether an un-
supervised learning approach can be used to understand
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and improve the screening decisions, and help to over-
come the limitations of supervised machine learning for
this problem.

2. Related Methods
2.1. Child Welfare Risk Modeling

Chouldechova et al. (2018) trained a risk assesssment
model for child welfare screening using placement as the
outcome. This approach has the advantage of converting
the risk problem into the classification setting where stan-
dard machine learning methods can be applied. The draw-
back of this supervised model is two-fold:

1. The outcome is only observed for cases that are
screened-in (i.e. selective labels problem)

2. The model trains on a different potential outcome than
the true outcome of interest.

To elaborate on the second drawback, we use the Neyman-
Rubin potential outcome, denoting Y a as the potential out-
come Y that we would observe under intervention A =
a (Rubin, 2005). Letting A denote the screening deci-
sion where A = 1 corresponds to screen-in, then our out-
come of interest, as motivated in the Introduction, is Y 0,
whereas Chouldechova et al. (2018) are using Y 1 to train
the model. If the intervention has any treatment effect, then
E[Y 0|X] 6= E[Y 1|X].

De-Arteaga et al. (2018) propose a reweighing procedure to
resolve the selective labels problem which leverages “ex-
pert consistency” to resolve overlap violations. Inverse
probability weighing (IPW) methods can be used to resolve
selective labels if every person has a non-zero chance of be-
ing screened-in, which is referred to as overlap. De-Arteaga
et al. (2018) propose imputing the label as ’no-harm’ for
people who have no overlap, justifying this procedure with
the notion of expert-consistency.

However, no approach to child welfare screening has yet
considered how to resolve limitation (2) and appropriately
account for the effect of intervention on the observed out-
come. This is a particularly notable limitation since if the
child welfare process works as intended, the intervention
should mitigate risk. The investigation may reduce risk
because increased supervision may cause the perpetrator
to change their behavior or because as part of the investi-
gation the county may choose to offer services to aid the
family that could include counseling, case management, or
employment training. Conversely, in some cases, the inves-
tigation could increase risk of harm because the stress of
increased supervision may exacerbate the situation. There-
fore, we hypothesize that an unsupervised approach may
discover a more realistic risk structure than a supervised
approach which assumes no intervention effects.

2.2. Unsupervised Topic Modelling

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is the
most prevalent topic modeling method. For a given corpus,
LDA learns: (1) the topics in the corpus and (2) the topic
distribution for each document. A significant advantage of
LDA is that it does not require labels of the documents.
Possible methods for evaluating LDA include interpreting
the semantic meaning of the topics and performing down-
stream tasks on the documents like clustering (and see if
the clusters are meaningful). In our setting, we treat chil-
dren as documents. By ignoring the labelling information,
e.g. the screen-in and screen-out decision for each child,
LDA not only ensures the learned topics to be semantically
meaningful, but guarantees the topic distribution for each
child to be unbiased.

2.3. Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN’s) are temporal di-
rected acyclic graphical models. Hidden Markov Mod-
els (HMM’s) and Kalman Filters are two common DBNs;
DBNs generalize these structures to include any directed
acyclic graph with repeating units over time, where the
units are referred to as time slices (Kanazawa et al., 1995).
A topic model can be formulated as a DBN e.g. (Blei &
Lafferty, 2006). This dynamic topic model allows both the
distribution over topics to change over time, as well as the
definition of topics (i.e. the distribution over words). In this
setting, variational inference is used because of the noncon-
jugacy that arises in the dynamic formulation which models
time dynamics as Gaussian.

3. Method
3.1. LDA for Static Risk Modeling

We build a static model that uses Latent Dirichlet Alloca-
tion (LDA) to uncover any underlying structure in the child
records. Each child record can be seen as a document c
that has Nc features. The whole dataset is then treated as a
corpus with C child records. Given this corpus, LDA will
provide us with topics {βk}Kk=1, i.e. representative distri-
butions over the features F that have semantic meaning.
Each child record c is assigned a distribution over the top-
ics. Then, a screen-in decision for the child can be made by
checking if c has higher probability of falling in the high
risk topic.

To use LDA, we make two simplifying assumptions on
the dataset: (1) features of the same call are independent
from each other; (2) call records are independent, i.e. call
records about the same child at different time are treated
as different documents. The graphical model of the child
welfare data is shown in Figure 1. The generative process
of the child welfare data set is described as follows:
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• For k = 1, ...,K:

– Draw topic βk ∼ Dirichlet(η).

• For every call record c ∈ C:

– Draw per-call-record mixture proportion
θc ∼ Dirichlet(α)

– For each feature f in the record description c:
∗ Sample a topic indicator zcf ∼ Multi(θc)
∗ Sample the feature wcf ∼ Multi(βzcf )

α

θc

zcf

wcf

η βk

C

Fc

K

Figure 1. Graphical Representation of the Latent Dirichlet Allo-
cation on the Child Welfare Dataset.

Inference We use the standard gensim (Řehůřek & So-
jka, 2010) library for the LDA implementation. As sug-
gested by the library, the inference method is batch Varia-
tional Bayesian inference (Hoffman et al., 2010).

Evaluation LDA is in general hard to evaluate since there
is no ground truth of topics in a corpus. We perform two
types of evaluation:

1. Interpret the semantic meanings of the discovered top-
ics

2. Predict downstream outcomes using the per-child-
record mixture as an embedding of the child record.
These downstream outcomes are A) whether the child
will be re-referred to the hotline in a six month period
from the original referral and B) whether the child will
be placed out-of-home.

We conduct the downstream predictions using two ap-
proaches: 1) observational evaluation: the standard

approach that uses observed outcomes and 1) coun-
terfactual evaluation: a counterfactual approach that
controls for the effect of interventions on the observed
outcome. In particular, the county’s investigation and
any services offered can mitigate risk, so observationally
someone who received this treatment looks “lower risk”
than they would have been counterfactually had they
not received treatment. We believe our counterfactual
analysis is more accurate since it accounts for intervention
effects; we present the results of both methods in Section 4.

The counterfactual evaluation relies on three standard as-
sumptions from causal inference, where A denotes the de-
cision to investigate and where π(X) = P(A = 1|X) de-
notes the propensity score:

1. Consistency: Y = AY 1 + (1−A)Y 0.
This assumes there is no interference between treated
and untreated units. This is a reasonable assumption in
the child welfare screening setting since it is unlikely
that opening an investigation into one case will affect
another case’s observed outcome.

2. Exchangeability: Y 0 ⊥ A|X . This assumes that we
measured all variables X that jointly influence the in-
tervention decision A and the potential outcome Y 0.

3. Weak positivity requirement: P(π(x) < 1) = 1 re-
quires that each example have some non-zero chance
of being screened out.

With these assumptions we can identify counterfactual er-
ror metrics; the derivation for precision is given below and
the other error metrics are described in the Appendix.

Letting ĥ denote the predicted label, the target counterfac-
tual precision is

E[Y 0 | ĥ = 1]

Under our causal assumptions this is identified as

E[E[Y | X,A = 0] | ĥ(X) = 1]

Letting Pn(f) denote the sample average of f , the doubly
robust estimator for counterfactual precision is

Pn
[ 1−A
1− π̂(X)

(Y − µ̂0(X)) + µ̂0(X) | ĥ(X) = 1
]

3.2. Dynamic Topic Models for Sequential Risk
Modeling

To relax the assumption that phone calls are time indepen-
dent, we use a dynamic topic model to capture the time de-
pendencies among the phone calls. Adapting the dynamic
topic model proposed by (Blei & Lafferty, 2006), we keep
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the topics over time fixed and consider the topic mixture
for each phone call to be time dependent. Such a design
ensures the risk profiles across time to be comparable. As
shown in Figure 2, we assume the topics (risk types) re-
main constant over time; as time changes, the risk profiles
(the topic mixtures) will be drawn from a different distri-
bution. The generative process is described below (Blei &
Lafferty, 2006):

• At time slice t, draw αt, αt−1 ∼ N (αt|δ2I).

• For each phone call i ∈ I at time slice t:

– Draw ηti ∼ N (αt, σ
2I).

– For each k ∈ [K], θtik = exp(ηtik)∑
k exp(ηtik)

.

– For each feature:

∗ Sample a topic ztif ∼ Multi(θti).
∗ Sample a feature wtif ∼ Mult(βk,ztif ).

α1

θ1i

z1if

w1if

α2

θ2i

z2if

w2if

. . .

. . .

αc

θc

zicif

wcif

η βk

I I I

F1 F2 Fc

K

Figure 2. Graphical Representation of the Dynamic Topic Model
on the Child Welfare Dataset.

Since the child welfare process is inherently temporal, our
goal here is to investigate whether a model that allows
time dependencies learns more meaningful risk profiles
that might perform better on downstream prediction tasks.

Inference Since this dynamic model does not have con-
jugate prior, as described in (Blei & Lafferty, 2006), a
more ideal inference method is variational inference with
a mean-filed approximation distribution. The approximate
variational posterior is

K∏
k=1

q(βk|ak)×
C∏
c=1

 I∏
i=1

q(θti|bti)
Ft∏
f=1

q(ztif |ctif )

 .

The update rules are then derived based on variational
kalman filtering and variational wavelet regression.

Evaluation We hypothesize that the phone call number
is a confounder of the child risk profiles. For example, a
second phone call of the same child implies that the child
is at a higher risk. Alternatively, the first phone call record
could have a positive or negative effect on the child. To
test this hypothesis, we explicitly model this confounder
through the previous dynamic topic model and build a clas-
sifier conditioned on the phone call time slice. We compare
the performance of the dynamic model versus the static
model conditioned on the time slice of the phone call.

4. Experiments
In this section we present experimental results for the mod-
els presented in Section 3.1 and Section 3.2.

4.1. Data

We use data from Allegheny County’s Department of Hu-
man Services (ACDHS). The ACDHS data consists of
58,468 calls to the hotline between 2010 and 2016 and in-
cludes county records, screening decisions, and coded in-
formation from the phone call. These calls are over 30,000
in total; 48% of these calls were screened in for investi-
gation, and 13% of these screened-in cases resulted in a
placement outcome (Chouldechova et al., 2018). The fea-
tures in the county records include demographic and so-
cioeconomic information, historical child welfare interac-
tion, public welfare, usage of public programs like Sup-
plemental Security Income and Temporary Assistance for
Needy Families, involvement with the Allegheny County
criminal justice system, and behavioral health information
for Medicaid recipients. This data is part of ACDHS’s Data
Warehouse, which links data across all publicly funded hu-
man services. The call log data codes the alleged child
maltreatment into categories including inadequate clothing,
left alone, sexual abuse or exploitation.

4.2. Data Preprocessing

One obstacle of applying LDA to the child welfare dataset
is translating a child record into a document. There are four
kinds of features among the feature set, namely binary, con-
tinuous, ordinal and categorical. Binary features are only
included if their value is True for the given child. For cat-
egorical and ordinal features, we treat their values as words.
For each feature f i that takes values {f ij}dj=1, a child that
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Figure 3. Counterfactual ROC curve for re-referral task

has feature f i = f ij will have the word “f i : j” in his/her
document. For continuous features, we first put the values
into 10 bins and rank them as if the features are ordinal.
Then, we perform the same processing for the continuous
features as the one we have done for the ordinal features.

4.3. LDA for Static Risk Modeling

We trained an LDA model according to Section 3.1, using
the code provided by Řehůřek & Sojka (2010). We set the
number of topics K = 15, a number that allows us to have
a reasonable set of interpretable risk profiles that still hold
predictive power. All other hyperparameters, except for the
number of passes (which was set to 100) were left as those
specified by default.

4.3.1. SEMANTIC ANALYSIS

We assigned semantic meaning to the 15 topics learned by
the static LDA model (see Table 1). These meanings were
assigned by analyzing the features that were most probable
given the topic. We observe a mix of expected and unex-
pected topics: for instance, topics 10 and 12 are expected
since drug/alcohol abuse, domestic violence, and malnutri-
tion or lack of proper supervision are standard allegations
of child abuse/neglect. Topics such as topic 5 homeless,
young child and topic 6 low risk, previous referral are more
surprising. Future work could validate the semantic mean-
ing of these topics by comparing to call screeners’ assess-
ments of the most common risk profiles.

4.3.2. PERFORMANCE ON DOWNSTREAM TASKS

We define two downstream tasks in order to verify that
our learned risk profiles do capture information about each
call’s latent risk. Specifically, we use each call’s distribu-
tion over risk profiles as its feature representation, and use
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Figure 4. Counterfactual PR curve for re-referral task

it to predict two relevant risk proxies: (1) whether a given
record will be re-referred in the future, and (2) whether any
subsequent investigation results in placement out-of-home.
For each one of these tasks, we train a random forest us-
ing 5-way cross validation. We tune the number of trees
and the maximum depth, leaving all others as the defaults
in (Pedregosa et al., 2011). We use the same train-test splits
as those in (Chouldechova et al., 2018).

We obtain the ROC and Precision-Recall (PR) curves
shown in Figure 6 using the standard observational ap-
proach. We also plot a counterfactual ROC curve and PR
curve using our counterfactual estimates of true positive
rate, false positive rate, and precision (see Figures 3 and 4).
Both methods of evaluations (standard and counterfactual)
show that our LDA representation performs only slightly
worse than using the full feature set (retaining ∼ 95% of
the ROC AUC and ∼ 82% of the PR AUC). Thus, we con-
clude that the learned risk profiles capture the most salient
information about the call’s latent risk.

4.4. LDA for Dynamic Risk Modeling

A dynamic topic model is trained as described in Sec-
tion 3.2 using the code provided by Řehůřek & Sojka
(2010) and setting the number of topics to 15 (to allow for
a fair comparison with our static model). Our main hypoth-
esis to test is whether conditioning on the phone call will
improve the classifier performance. Throughout the sec-
tion, we consider 5 different time slices corresponding to
the first four calls for a given case plus a time slice for calls
corresponding to fifth calls and beyond. In other words,
each call that presents a new case is assigned to time slice
t1; each call that re-refers a case for the first time is as-
signed to t2; second re-referrals are assigned t3; third to t4,
and all other calls go into t5.
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Figure 5. Likelihood ratio test for the contrast between the fixed
topics model and the dynamical topics model. Number of call 0
refers to the static LDA model.

4.4.1. DYNAMIC AND FIXED TOPICS TEST

We first test whether the data suggests that risk profiles vary
over time. To do this, we test for the goodness of fit of the
risk profiles of our sequential model vs. those of our static
model. We use the likelihood ratio test in which we com-
pare the null hypothesis that the generative process of the
risk profiles has a common Dirichlet distribution (like in
the classic, static LDA), against the alternative hypothesis
that the risk profiles come from time varying distributions
(like in our sequential model). Now, since it is not pos-
sible to obtain a closed expression for the distribution of
the statistical test, we rely on the Wilkinson’s asymptotic
convergence of the ratio test over the variational approxi-
mations of the original likelihoods. As we can see from
Figure 5 there exist significant evidence that suggests the
existence of dynamical risk profiles.

4.4.2. SEMANTIC ANALYSIS

We display our interpretation of the given topics in Table 2.
Topic 3, long-term pattern of inadequate physical care, is
the most common topic, which makes sense since inade-
quate physical care is also the most common allegation to
the child welfare hotline, comprising 39% of calls. There
is some overlap with the topics from the static model in
Table 1, such as topic 4 and 9, but there are notable dif-
ferences. Particularly, we see very specific topics, such as
topics 6 and 7, chronic medical neglect and sexual assault
with low risk of repeat incident.

4.4.3. PERFORMANCE ON DOWNSTREAM TASKS

Finally, knowing that our dynamic and static risk profiles
are statistically distinct (see Section 4.4.1), we examine
the performance of the risk profiles learned through our
dynamic model on the same two tasks specified in Sec-

tion 4.3.2. More specifically, we wish to test whether con-
ditioning on the phone call time slice will improve the clas-
sifier performance. To do this, for each time slice t: (1) we
train a model on calls assigned to t, and (2) we test the
model on a held-out set of calls also assigned to t. For each
model, we follow the same training procedure described in
Section 4.3.2.

We are interested in how these different models perform
when using the risk profiles extracted from the dynamic
topic model as features. As our baseline, we train each
model on the risk profiles extracted from the static LDA
presented in Section 3.1. We present the results in Table 3
(for the re-referral task) and Table 4 (for the placement out-
of-home task). It is clear that the features learned by the dy-
namic topic model are not as predictive of our risk proxies
as those obtained from the static LDA. Furthermore, the
performance of the conditioned models (i.e., trained and
tested on calls from one time-slice) is comparable to their
performance on a global model (i.e., trained on calls from
all time-slices). We are led to conclude that the temporal
information captured by our dynamic topic model is not
only insufficient to help in these downstream tasks, but that
the proposed conditioning is hurtful for them.
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Semantic interpretation
Topic 1 Inadequate parental care.
Topic 2 Uncertain risk, referral history.
Topic 3 Criminal history and public welfare assistance programs.
Topic 4 High risk infant, parent with criminal history.
Topic 5 Homeless, young child.
Topic 6 Low risk, previous referral.
Topic 7 Referral history, economic assistance.
Topic 8 Pattern of child abuse and substance abuse.
Topic 9 Low risk inadequate care by mother.
Topic 10 Drug and alcohol use, domestic violence.
Topic 11 High risk, pattern of abuse.
Topic 12 Malnutrition and/or lack of supervision of toddler or young child.
Topic 13 Teen victim with prior child welfare history and criminal involvement.
Topic 14 High risk of maternal neglect.
Topic 15 Inadequate physical care, impending danger.

Table 1. Semantic Interpretation of the Topics obtained through Static LDA.

Semantic interpretation
Topic 1 Unstable home situation and economically impoverished.
Topic 2 High risk and impending danger
Topic 3 Long term pattern of inadequate physical care.
Topic 4 Public welfare assistance and criminal involvement.
Topic 5 Criminal history and referral history.
Topic 6 Chronic medical neglect.
Topic 7 Sexual assault with low risk of repeat incident.
Topic 8 Impending danger to newborn/ infant.
Topic 9 High risk, pattern of abuse.
Topic 10 Criminal history of mother.
Topic 11 Criminal history of alleged perpetrator, school age child.
Topic 12 Referral from other county or agency.
Topic 13 Inadequate food, public welfare assistance.
Topic 14 Prior abuse or neglect history.
Topic 15 Low risk, mother has history of referrals.

Table 2. Semantic Interpretation of the Topics obtained through Dynamic LDA.

Time Slice Static LDA Dynamic Topic Modeling
1st phone call ROC = 0.60 ROC = 0.50

PR = 0.24 PR = 0.18
2nd phone call ROC = 0.63 ROC = 0.51

PR = 0.30 PR = 0.21
3rd phone call ROC = 0.62 ROC = 0.50

PR = 0.40 PR = 0.31
4th phone call ROC = 0.40 ROC = 0.50

PR = 0.43 PR = 0.35
5th or more phone calls ROC = 0.64 ROC = 0.53

PR = 0.61 PR = 0.52

Table 3. Re-referral performance comparison of the Static LDA features and the Dynamical Topic Model.
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Figure 6. ROC and PR curves for our downstream tasks using the standard observational approach.

Time Slice Static LDA Dynamic Topic Modeling
1st phone call ROC = 0.77 ROC = 0.52

PR = 0.27 PR = 0.09
2nd phone call ROC = 0.77 ROC = 0.51

PR = 0.28 PR = 0.10
3rd phone call ROC = 0.71 ROC = 0.50

PR = 0.30 PR = 0.16
4th phone call ROC = 0.72 ROC = 0.53

PR = 0.38 PR = 0.18
5th or more phone calls ROC = 0.69 ROC = 0.50

PR = 0.33 PR = 0.16

Table 4. Placement performance comparison of the Static LDA features and the Dynamical Topic Model.

5. Conclusions
We presented two unsupervised models that abstract the
problem of child welfare screening in Allegheny County,
Pennsylvania. Inspired by the widely used LDA model, our
proposed solutions bypass the selective labeling problem
encountered by previous work for this case study (Choulde-
chova et al., 2018; De-Arteaga et al., 2018) while perhaps
requiring more domain knowledge in order to interpret the
topics generated by the LDA (which we can interpret as
different populations of children with varying degrees and
causes of risk).

Our experiments showed that the LDA topic features per-
form almost on par with the raw features on downstream
risk tasks in the child welfare process, and we observed
that while the risk profiles do appear to change over time,
allowing a model to capture these dependencies did not im-
prove performance on the downstream risk tasks. Future
work should focus on investigating whether allowing de-
pendencies between the features improves performance on
the placement and re-referral tasks.
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A. Appendix
A.1. Counterfactual error metrics

Let t denote the threshold used for classification, and let
ĥ(X) = I{µ̂(X) ≥ t} be the predicted label, where I is
the indicator function. The target counterfactual FNR is

E[1− ĥ(X) | Y 0 = 1]

Using our causal assumptions in Section 3, this is identified
as

E
[
(1− ĥ(X))E[Y | X,A = 0]

]
E
[
E[Y | X,A = 0]

] (1)

where we can use doubly robust estimates for the two iter-
ated expectation terms.

The doubly robust estimate for the numerator is

Pn

[
(1− ĥ(X))

[ 1−A
1− π̂(X)

(Y − µ̂0(X))+ µ̂0(X)
]]

(2)

The doubly robust estimate for the denominator is

Pn
[ 1−A
1− π̂(x)

(Y − µ̂0(X)) + µ̂0(X)
]

(3)

Since recall/sensitivity is 1 − FNR, we can use this esti-
mator to also estimate recall.

A.2. False Positive Rate (FPR) Estimator

The target causal FPR is

E[ĥ(X) | Y 0 = 0]

Using our causal assumptions in Section 3, this is identified
as

E
[
ĥ(X)E[1− Y | X,A = 0]

]
E
[
E[1− Y | X,A = 0]

] (4)

where as the doubly robust estimate for the numerator is

Pn

[
ĥ
[ 1−A
1− π̂(X)

(µ̂0(X)− Y ) + (1− µ̂0(X))
]]

(5)

The doubly robust estimate for the denominator is

Pn
[ 1−A
1− π̂(x)

(µ̂0(X)− Y ) + (1− µ̂0(X))
]

(6)


