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Abstract
Causal discovery is a process of discovering
causal information from observed data. Previ-
ous work in the field has focused on discover-
ing causal directions in two variables, with extra
effort on constructing assumptions for the data
distribution and proving identifiability. However
they lack flexibility in scaling up causal discov-
ery for multiple variables and a systematic end-
to-end pipeline. We extend two existing work in
the literature (LiNGAM and PNL), and by inte-
grating them with deep neural networks, we pro-
pose an end-to-end learning scheme for training
a model for causal discovery. We evaluate our
method on several real and simulated datasets.

1. Introduction
Data analysis is often driven by causal questions. A bio-
statistician may be interested in the effectiveness of a treat-
ment, a financial analyst may be interested in the effect of
government actions on a stock market crash, and an insurer
may want to know what costs can be attributed to obesity.
However, these types of questions are not easily expressed
in the traditional language of statistics (Pearl et al., 2016).
This motivates our work, which offers a possible approach
for causal discovery.

Causal discovery refers to the discovery of causal infor-
mation from observational data. This is different from but
closely related to causal inference, which involves finding
the causal effect of one variable on another. Previous causal
discovery algorithms have exploited conditional indepen-
dence tests for removing unnecessary connections among
the observed variables, in order to produce a set of acyclic
causal models which are in the d-separation equivalence
class.

This work investigates and extends the post-nonlinear
(PNL) acyclic functional causal model (Zhang &
Hyvärinen, 2009). In this model, each observed variable
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is assumed to be generated by a nonlinear function of its
parents, with additive noise, followed by a nonlinear dis-
tortion. The nonlinearity in the second stage takes into ac-
count the effect of sensor distortions, which are usually en-
countered in practice. With this assumption regarding the
form of the functional causal model, it is possible to infer
causal relationships between any pairs of variables.

As we will show, this can be extended to jointly infer the
causal relationships between all variables in an end-to-end
fashion. We find this direction appropriate as scalability
is a major challenge in causal discovery and an end-to-
end solution allows for more efficient structural discovery.
This can lead to some complicated structures, however, so
we also explore a simplified model which may be more
amenable to practical use. Finally, we evaluate our mod-
els on both real and simulated datasets.

To summarize, the contributions of this work are: (1)
jointly inferring the causal directions among multiple vari-
ables in a scalable end-to-end fashion, (2) simplifying the
model for easier practical use and interpretation, and (3)
evaluating our models on both real and simulated datasets.

2. Background
Following Zhang & Hyvärinen (2010), this work uses post-
nonlinear functions to model causal relationships. PNL
functions are defined to have the following form:

xi = gi(fi(pai) + ei)

where fi denotes the nonlinear effect of the causes, gi de-
notes an invertible post-nonlinear distortion, pai is the par-
ent cause of xi, and ei is an independent disturbance. Note
that pai is independent of ei, but xi is not. Rearranging,
the noise terms can be recovered by using the inverse of gi:

ei = g−1i (xi)− fi(pai)

Now, suppose we are curious about the causal relation-
ship between two variables x1 and x2. If x1 → x2 (i.e.
xi = x2 and pai = x1 in the above equations), then as
previously mentioned, the parent cause x1 should be inde-
pendent of the noise e2. That is, there exist nonlinear func-
tions g−11 , g−12 , and f2 such that g−11 (x1) is independent of
e2 = g−12 (x2)− f2(x1).
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Using this key observation, our goal is now to see whether
there exist such nonlinear functions that make g−11 (x1) and
e2 independent. In our work, neural networks are used to
parameterize these nonlinear functions, and we optimize
for independence by minimizing mutual information be-
tween x1 and e2. Previous work (Almeida, 2003) has uti-
lized constrained nonlinear independent component analy-
sis (ICA) followed by statistical independence tests to dis-
tinguish the cause from the effect in the two-variable case.

Often, however, we are interested in causal interactions be-
tween not just two variables, but many variables. One could
try to exhaustively test all possible causal relationships be-
tween pairs of variables, but the computational costs of this
grows exponentially. Thus, the direction we explore builds
off of ideas described by (Zhang & Hyvärinen, 2009) in or-
der to extend this framework to the multivariate case. The
goal is to jointly infer causal relationships between many
variables in a scalable manner, leveraging insights from the
two-variable case.

Luckily, previous work has shown that the PNL model is
identifiable in all but five cases which are listed in Table 1
of (Zhang & Hyvärinen, 2009). We provide the definition
and theorem for identifiability below.

Definition 4 (Identifiability) (Pearl, 2009) The causal ef-
fect of X on Y is said to be identifiable if the quantity
P (y|x) can be computed uniquely from any positive dis-
tribution of the observed variables, that is, if for every pair
of theories T1 and T2 such that PT1(v) = PT2(v) > 0, we
have PT1(y|x) = PT2

(y|x).

That is, under identifiability, for any causal models which
assign equal and positive probability to the set of observed
variables, the inferred causal effects will be the same. This
is desirable because models which maximize likelihood
should not give conflicting inferences.

Now, Theorem 1 (Zhang & Hyvärinen, 2009) provided be-
low shows that mutual independence of the noise terms ei
is a sufficient condition for identifiability.

Theorem 1. When fitting variables x1, ..., xn to the PNL
acyclic causal model with the causal structure represented
by the DAG G, the noise terms ei are mutually independent
if and only if the causal Markov condition holds (i.e. each
variable xi is independent of its non-descendants condi-
tional on its parents in G), and the noise ei in xi is inde-
pendent of the parents of xi.

Proof. A sketch goes as follows: We only show ⇒ direc-
tion as the other direction follows by definition of PNL
models.

We want to show that e1, .., en are mutually independent, or
equivalently, x1, ..., xn follow the PNL causal model rep-
resented by G, if the causal Markov condition holds and the

noise ei is independent of Pai.

Write zi = g−1i (xi). As the causal relations are acyclic, we
can obtain a topological order such that no later variable
causes any earlier one. Let this order be (x1, ..., xn).

By change of variables from zi → xi with xi = gi(zi):

p(xi|Pai) = p(zi|Pai)/|g′i(zi)|

Therefore:

H(ei) ≥ H(ei|Pai)
= H(zi|Pai)
= −E[log p(zi|Pai))]
= −E[log p(xi|Pai))]− E[log |g′i(zi)|]
= H(xi|Pai)− E[log |g′i(zi)|]
≥ H(xi|x1, ..., xi−1)− E[log |g′i(zi)|]

Summing this across i’s to get:

∑
i

H(ei) ≥
∑
i

H(xi|x1, ..., xi−1)−
∑
i

E[log |g′i(zi)|]

= H(x1, ..., xn)−
∑
i

E[log |g′i(zi)|]

Equality on holds if ei is independent of Pai and that
the causal markov condition holds, meaning {xk|xk 6∈
Pai, k ∈ [i− 1]} are independent of xi given Pai.

If the causal markov condition holds and ei is independent
of Pai , consider the transformation from (x1, .., xn) →
(e1, .., en), the Jacobian J is lower-triangular since ei does
not depend on xj for (j > i). Ji,i = 1/g′i(zi). Therefore,
we have the determinant |J | = (

∏
i g
′
i(zi))

−1.

Therefore, if the causal markov condition holds,∑
iH(ei) = H(x1, ..., xn) −

∑
i E[log |g′i(zi)|] and

the mutual information of e1, ..., en is such that the below
equality holds:

I(e1, .., en) =
∑
i

H(ei)−H(e1, ..., en)

=
∑
i

H(xi)− [H(x1, ..., xi) + E[log |J |]]

=
∑
i

H(ei)− [H(x1, ..., xi) +
∑
i

E[log |g′i(zi)|]]

= 0

This implies e1, .., en are mutually independent.
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3. Related Work
Zhang & Hyvärinen (2010) is most closely related to our
proposed work. In this work, the authors model fi’s us-
ing multi-layered perceptrons (MLP) and exploit a two-
step process to discover causal relationship between two
variables. The first step is performing gradient descent to
learn the parameters of the MLPs by minimizing the mu-
tual information between ei and pai. The second step is
performing a statistical independence test to see if they are
independent.

In (Zhang & Hyvärinen, 2009), the authors refine their
work in Zhang & Hyvärinen (2010) by further investigat-
ing the identifiability of the PNL causal model. Notably,
they enumerate all possible situations in which the PNL
system is not identifiable, and also describe a possible way
to extend the method of discovering causal relationships
between two variables to multiple variables.

Several works justify minimizing dependency between the
regressor and the noise for causal discovery. Mooij et al.
(2009) suggest a framework for causal discovery that mini-
mizes the dependency of the noise and the regressor, and
use the Hilbert-Schmidt Independence Criterion (HSIC)
test for verifying the independence, which resulted in
a good performance for the NIPS Causality Challenge.
Zhang et al. (2016) further justify the use of mutual infor-
mation between the noise variables as the loss for the op-
timization in search for the parameters of the PNL causal
model. It also introduces a new family of nonparametric
methods for estimating the PNL causal model.

Combining causal models with deep learning has been an
active area of research. Louizos et al. (2017a) use vari-
ational autoenconders to tackle the problem of discover-
ing latent representation of the confounders from observed
noisy version of the confounders. The authors make use of
deep neural networks to encode/decode the distribution of
these confounders, with a new architecture suited for ad-
dressing counterfactual queries. Unlike this work which
focuses on learning representations of the true confounders
using the observed proxies, we are more interested in dis-
covering the true causal model using the observed variables
based on the PNL model.

In addition to combining causal models, recent work has
studied how to combine multiple datasets in order to im-
prove learning in causal models. For many real-world prob-
lems, there are many data sources encoding the same under-
lying phenomena. Leveraging the presence of nonstation-
ary heterogeneous data, Zhang et. al. proposed constraint-
based causal discovery procedures (Zhang et al., 2017).
While non-stationary data often changes the correlations
that appear within data, this work observes that nonstation-
arity actually helps determine causal orientations due to the

invariance of causal mechanisms.

In terms of application, prior works (Tran et al., 2017) have
sought to study causal relationships in Genome-Wide As-
sociation Studies (GWAS). The work has sought to address
two key issues in modeling GWAS. The first is latent con-
founders due to population structure. To address this, this
paper suggests learning the confounders jointly with the
rest of the model. The second problem is the highly non-
linear interactions between different parts of the genome.
To address this, an “implicit causal model” is proposed and
utilizes deep neural networks with implicit density to cap-
ture this rich nonlinearity. Inference is performed using
likelihood-free variational inference.

Previous applied work has also aimed to construct
causal biological networks by utilizing the active learning
paradigm. Cho et al. (2016) learn Gaussian Bayesian net-
works from observational and intervention data, iteratively
acquiring new data instances by carrying out the optimal in-
terventions predicted to cause the largest change in belief,
and updating the network accordingly. Their methods lead
to significant runtime improvements, and are effective on
both simulated data and the DREAM4 network inference
challenge data sets.

4. Methods
We present two architectures for an end-to-end causal dis-
covery: (1) Deep PNL, and (2) LinPNL which is a linear
simplification of Deep PNL.

4.1. Deep PNL

To alleviate the issues of scalability and end-to-end learn-
ing, we propose Deep PNL, which parameterizes the non-
linearities as multi-layer perceptrons (MLPs) and trains the
whole model end-to-end with an appropriate loss. We fol-
low the standard post-nonlinear assumption that

ei = g−1i (xi)− fi(pai), i ∈ {1, ..., d}

where the nonlinearities g−1i (·) and fi(·) are modeled as
MLPs. If we consider the two-variable case where x2
causes x1, then (as explained in Section 2) in the sub-
network shown in Figure 1, e1 and e2 should be indepen-
dent for some fi’s and gi’s.

Now, we extend this to the d-variable case. Figure 2 shows
the full model architecture given d-dimensional inputs. We
treat pai as all variables other than xi (as shown from the
almost-fully-connected first layer), because prior to learn-
ing we do not know which variable causes which. We also
impose L1 regularization on the objective function to en-
courage sparsity of the weights, pushing non-meaningful
connections towards zero.
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Figure 1. Sub-network of Deep PNL for when x2 causes x1.

Figure 2. Deep PNL architecture for d variables. We model func-
tions g−1

i ’s and fi’s with MLPs. The objective is to make the
noise output ei’s independent, which is done by minimizing the
mutual information I(e1, ..., ed).

With the Deep PNL architecture, we minimize the mu-
tual information of the noise terms, I(e1, ..., ed), to make
them as independent as possible. Formally, with Deep PNL
model denoted as ê = Φθ(x), our objective is

min
θ
I(Φθ(x)) + λ‖θ‖1.

Numerically optimizing the mutual information is not triv-
ial, and we employ the tricks used in several previous
works. One observation Zhang & Hyvärinen (2009) makes
is that we can express the mutual information as

I(e1,..., ed)

=

d∑
i=1

H(ei)−H(e1, ..., ed)

=

d∑
i=1

H(ei)− (H(x1, ..., xd) + E[log |det J |])

where J is the Jacobian of ei, e.g.
[
∂ei
∂xj

]
ij

. We can drop the

second term from the objective because it does not depend

on the parameter we are optimizing. But even with this, it
is not clear how to compute the individual entropy terms as
we do not assume anything about the distribution of ei’s.
To do so, one can think about assuming some form of dis-
tribution of ei’s using Gaussian mixtures and learn the pa-
rameters jointly with the Deep PNL. Another method is to
use the intuitions employed in INFOMAX (Linsker, 1988)
or MISEP (Almeida, 2003). To minimize the mutual in-
formation among ei’s, we introduce nonlinear transforma-
tions, ψi’s, for each variable, which is designed to model
the CDF of ei’s, as shown in Figure 3.

Deep

PNL 

ψ1

e1

ψd

ed

.

.

. 

z1x1

xd

.

.

. 

zd

Figure 3. Architecture for training Deep PNL using INFO-
MAX/MISEP. We train ψi to be the CDF of ei by maximizing
the joint entropy H(z1, ..., zd).

We make an observation that if ψi’s are indeed CDFs of
ei’s, then zi = ψi(ei) will follow a uniform distribution
U(0, 1). Then the individual entropy terms of zi’s will be
zero, H(zi) = 0, meaning that we have

I(e1, ..., ed) = I(z1, ..., zd)

=
∑
i

H(zi)−H(z1, ..., zd) = −H(z1, ..., zd). (1)

Therefore our objective of minimizing I(e1, ..., ed) is
equivalent to maximizing H(z1, ..., zd). Also note that
maximizing H(z1, ..., zd) with ei’s being fixed is equiva-
lent to maximizing the individual entropy terms H(zi) as
seen in Equation 1, leading to zi ∼ U(0, 1) as uniform
distribution is the distribution that maximizes the entropy
in a bounded support. As a result ψi we learn will indeed
approach the CDF of ei.

As a result, our revised objective for minimizing
I(e1, ..., ed) will be

min
φ
−H(z) = min

φ
−E[log |det J |]

where J =
[
∂zi
∂xj

]
ij

, and now we optimize over all the pa-

rameters φ which includes θ for the Deep PNL architecture
as well as parameters for each ψi. For the implementation,
we modeled ψi using MLP with sigmoid nonlinearities and
non-negative weights to ensure that it is an increasing func-
tion.
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4.2. A Linear Simplification to the Post-Nonlinear
Functional Causal Model

4.2.1. LINPNL

One drawback of the Deep PNL model is that there are
many parameters to be learned from a relatively small
dataset. Additionally, it is usually hard to find large-scale
causal datasets with known ground truth causal relation-
ships. Under such settings, Deep PNL may perform subop-
timally. To mitigate these issues and aim for simplicity, we
propose a linear simplification to the post-nonlinear model
for causal discovery, which we will refer to as LinPNL.

The key simplification of LinPNL is that the underlying
causal relationship is linear. LinPNL still allows a non-
linear distortion to the raw variables, which may cause the
observed data to be non-linear, but it is assumed that once
these non-linear distortions are reversed, the relationship
between cause and effect is linear.

As an illustration, consider the 2 variables case with x1 and
x2, and suppose x1 causes x2. LinPNL assumes that x1 and
x2 may not be linear due to some invertible, nonlinear dis-
tortion (e.g. due to observation error), modelled by g1 and
g2. However, once we reverse these distortions, g−11 (x1)
and g−12 (x2) are linear, i.e. g−12 (x2) = b1g

−1
1 (x1) + e1,

where b1 is a constant and e1 is assumed to be non-
Gaussian noise.

When we expand this model to d variables, the LinPNL
model assumes that the data is generated from the expres-
sion g−1(x) = Bg−1(x) + e, where g−1(x) signifies
element-wise application of the respective inverse func-
tions, g−1i on xi, i ∈ {1, ..., d}, and the matrix B encodes
the linear causal relationships. Our objective in LinPNL is
then to discover B from the data.

Figure 4. Linear simplification to the post-nonlinear causal model
(LinPNL). After a nonlinear transformation, linear causal rela-
tionships are encoded in the matrix W = I −B.

To do so, we consider an architecture as shown in Fig-
ure 4. gi’s are nonlinear functions modelling some non-
linear distortion, and W is a linear mapping from s to e,
i.e. e = Ws. Based on our assumption about the data
generation, we have e = (I−B)s, therefore learning this

W will allow the recovery of B. To learn W, again, we
want to minimize the mutual information of ei’s, and this
can, again, be done with the methods used for Deep PNL,
i.e. using the CDF approximators ψi’s. In this case we
would also like to add additional constraints on W, e.g.
sparsity, and diagonal elements being 1, to effectively learn
the causal relationship from given data.

4.2.2. COMPARISON OF LINPNL TO AN EXISTING
METHOD

Some previous work has been done in discovering causal
directions under the assumption of linear causal relation-
ships. One of the most notable works is LiNGAM (Shimizu
et al., 2006).

The assumptions of LiNGAM are almost identical to the
assumptions of LinPNL, except LiNGAM does not model
the nonlinear distortion, g. Hence, LiNGAM assumes the
observed variables are linear in their causal relationships,
x = Bx + e, with e being non-Gaussian noise.

LiNGAM recovers the causal relationships by directly ap-
plying ICA on the observed data, x, to derive the linear
transformation matrix W, which transform the data, x into
a matrix with independent components as rows. The linear
causal matrix B is recovered by an exhaustive row permu-
tation on I−W to make it as lower triangular as possible,
which is effectively reordering the variables in x in a causal
order so that effect variables always come after the cause
variables in x.

Comparing LinPNL to LiNGAM, LinPNL is more flexible
than LiNGAM by allowing a nonlinear distortion on the
data. Also, the computation load of LiNGAM grows expo-
nentially with the number of variables because it performs
an exhaustive permutation search on the causal relationship
matrix. In comparison, LinPNL would scale much better
with more variables because the number of parameters in
the model network would only increase linearly with the
number of variables.

Table 1 summarizes the models discussed so far and their
corresponding assumptions.

Model Functional Causal Assumption when xi → xj

(note: B is a scalar)

LiNGAM xj = B · xi + ei

LinPNL g−1j (xj) = B · g−1i (xi) + ei

Deep PNL xj = gi(fi(xi) + ei)

Table 1. Summary of models and their assumptions about the
functional form of causal relationships.
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5. Experiments
Empirical analysis is done on real and simulated datasets.
In this section, we provide practical implementation de-
tails, followed by evaluations of three different experimen-
tal setups.

5.1. Implementation Details

Pipelines for Deep PNL and LinPNL are implemented us-
ing Pytorch. g−1i in LinPNL and fi, g−1i in Deep PNL are
all modeled with neural networks with one hidden layer
of 20 ReLU units, and an output layer with sigmoid ac-
tivation. For both Deep PNL and LinPNL, ψi’s are imple-
mented as neural networks with one hidden layer of 10 hid-
den ReLU sigmoid units, and an output layer with sigmoid.
The choice of nonlinearities may require more investiga-
tion. Optimization is done with ADAM, with learning rates
tuned for a desirable decrease in the loss. For LinPNL, we
add an L1 loss that encourages sparsity of W , which we
initialized with 1’s for the diagonals. For every update, we
zeroed out the gradients of the diagonal elements of W to
keep the elements to be 1 throughout training. For Deep
PNL, L1 regularizer on all the weights is added to the loss,
although we plan to improve upon this naive sparsity con-
straints in future work.

5.2. Experiment 1: CauseEffectPairs Dataset

The CauseEffectPairs dataset, introduced by Mooij et al.
(2016)1, comprises of multiple two-variable datasets with
ground truth causal directions and real feature values, e.g.
altitude, temperature. There are total of 108 datasets of
pairs each with different causal directions, and 99 were
used for the experiment. The goal of this experiment is
to see how well LiNGAM, LinPNL, and Deep PNL per-
forms in predicting the true causal directions and compare
their accuracies. To interpret the directions predicted by
LinPNL, it is required to inspect the matrix W learned
and figure out the non-zero off-diagonal component. In
our experiments, it was difficult to force one of the off-
diagonal elements to be strictly or close to zero while
other being non-zero. Therefore we decided to consider
the off-diagonal entries with smaller absolute value to be
zero, as an approximation. With this prediction scheme for
LinPNL, Table 2 shows the accuracy values for LiNGAM
and LinPNL, from which we can observe that LinPNL out-
performs LiNGAM but with a small margin. However, con-
sidering that random guessing will have the accuracy of 50
percent (predicting either one direction or another), their
performances do not provide much significance. We can at-
tribute the LiNGAM’s failure to the data not following the
assumptions for LiNGAM, and LinPNL’s failure to prema-

1https://webdav.tuebingen.mpg.de/cause-effect/

ture convergence and approximation error in analyzing the
weight matrix W .

Model # Causal Directions Correctly Predicted
LiNGAM 36 / 99
LinPNL 39 / 99

Table 2. Accuracy of causal direction prediction on CauseEffect
Pairs dataset. LinPNL outperforms LiNGAM, but not significant.

In order to interpret Deep PNL’s results on CauseEffect
pairs dataset, not only the inspection of the weights learned,
but also the actual function values of fi(pai)’s are required.
The ideal scenario would be when the sparsity constraint
imposed on the loss function forces the weights of certain
fi’s to be all zero, which was not the case in our experi-
ment. Some examples of the function values fi’s for all
possible values of pai’s in the dataset is shown in Figure 5.
When f1(x2) = 1 and f2(x1) = 0 just like the first ex-
ample in the figure, the predicted direction is x2 → x1
because pa1 = x2. Just like we approximated the results
based on the off-diagonal entries of W for LinPNL, when
f1(x2) > f2(x1), roughly the predicted direction from
Deep PNL is approximated as x2 → x1 and vice-versa. But
the experiment did not provide clear directions for most of
the datasets, like the last example in the figure.

5.3. Experiment 2: Simulated Dataset

When the underlying data has a linear causal relationship
with non-Gaussian noise (i.e. satisfies the LinGAM as-
sumptions (Shimizu et al., 2006)), the LiNGAM model in-
troduced in Section 4.2 should be able to recover the causal
directions between the variables. At the same time, such
data would also satisfy the assumptions of LinPNL, with
the non-linearities (g’s) not being a non-linearity, but being
either an identity map or a linear function.

Therefore, we simulate data according to the LiNGAM
assumptions and test and compare the performance of
LiNGAM and LinPNL on this dataset. The data was gen-
erated as follows.

x = Bx + e

xi =
∑
j

bjipa
j
i + ei

bji ∼ Unif(0, 10), ei ∼ Unif(0, 0.1)

Here, B is simulated as a lower triangular matrix, so that
the parents of a variable xi are {xj |j < i}. Therefore,
between any 2 different variables, xi, xj , i 6= j, there is
always a causal relationship between them as either (xi →
xj) or (xj → xi). The number of variables (dimension of
x) was varied between 2 and 6, and 2000 datapoints were
generated in each trial, for a total of 10 trials. The accuracy

https://webdav.tuebingen.mpg.de/cause-effect/
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Figure 5. Directions predicted by Deep PNL. By comparing the values of fi’s we can recover some information about the directions
learned by Deep PNL, but most of them were inconclusive.

was measured by comparing the mean number of correct
causal directions identified across 10 trials.

Figure 6. Mean accuracy of LinPNL and LiNGAM in identifying
the correct causal relationships for 2 to 6 simulated variables

Figure 6 shows that LiNGAM performs better than LinPNL
in identifying the causal relationships. However, it is worth
noting that the data was generated exactly according to the
LiNGAM assumptions, hence the data was optimized for
the LiNGAM model. At the same time, LinPNL does rea-
sonably well to identify the correct causal relationships,
and outperforms random guessing by a considerable mar-
gin, indicating that LinPNL still is a competitive method
for causal discovery with linear causal relations.

5.4. Experiment 3: LASSO Regression Comparison

In practice, techniques such as linear regression with
LASSO regularization are frequently used to extract associ-
ations. While these associations are not necessarily causal,
they provide insight into which features are relatively pre-
dictive of a target of interest. The goal of our final exper-
iment is to compare the relationships extracted by causal
discovery methods versus those extracted by linear regres-
sion with strong regularization. This is particularly relevant
for many real world datasets for which we do not know the
underlying causal direction/relationship.

Feature LASSO LiNGAM LinPNL
fixed acidity 0.000 effect cause

volatile acidity -0.017 cause cause
citric acid 0.000 effect cause

residual sugar 0.000 effect cause
chloride -0.001 cause cause
free SO2 0.000 effect cause
total SO2 -0.003 effect cause
density 0.000 cause cause

pH 0.000 effect cause
sulphate -0.006 effect cause
alcohol -0.030 effect cause

Table 3. Regression coefficients of LASSO regression and causal
directions predicted by LiNGAM and LinPNL.

The dataset for this experiment contains approximately
1,600 samples of Portuguese “Vinho Verde” red wine vari-
ants. Features include physiochemical properties (alcohol,
acidity, sulphates, etc.) of the wines, and each sample is la-
beled with a numerical score measure quality. Features are
standardized, and the quality score is scaled to be between
0 and 1. For this dataset, an intuitive assumption is that
physiochemical properties cause quality and not the other
way around. Note, however, that not all physiochemical
properties will necessarily have a causal relationship with
quality in the first place.

Table 3 contains the regression coefficients and causal di-
rections of the LASSO regression, LinGAM, and LinPNL
models. The regularization parameter for LASSO regres-
sion was tuned to be α = 0.005, which achieved a mean
squared error of 0.0046, and the L1 penalty for LinPNL
was tuned to be 0.

We observe that while LiNGAM picks up two of the fea-
tures selected by LASSO, it misses the highly predictive
alcohol feature as a cause of quality. In contrast, LinPNL
identifies all of the chemicals as causes, which could be
correct (though difficult to verify). While this experiment
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only gives a partial view of the relationships extracted
by causal discovery methods versus predictive methods, it
does give some insight into how they differ on real data
where assumptions are not perfectly satisfied.

6. Conclusion
In this work, we present Deep PNL and LinPNL for causal
discovery, which are variants of PNL and LiNGAM using
deep neural networks, with an end-to-end learning scheme
using mutual information loss. We evaluate the model on
several datasets for causal direction prediction. As evi-
denced in the experimental section for the LinPNL and
Deep PNL models, we sometimes end up with ambiguous
models that predict causal directions both ways.

There are two main reasons for this. While the model is
flexible enough to represent the causal relationships be-
tween many variables, the model keeps getting stuck in bad
local minima due to difficulty of minimizing the mutual in-
formation objective. This is a well-known problem and is
an area of active research. With just a single gradient sig-
nal from the loss function of mutual information, the model
needs to learn the CDFs used for MISEP, along with the
weight matrices for Deep PNL/ LinPNL. We plan to ex-
plore different structures of MLPs and nonlinearities that
compose each part of the model to improve the optimiza-
tion. The second is lack of effectiveness of L1 being the
regularizer for encoding causal constraints. For example,
if the true causal relationships have coefficients 0 and 20,
L1 regularization may not quite optimize for the type of
sparsity we would like. That is, it is not the size of the co-
efficients that we care about, but rather how many of them
are nonzero. To address this issue in the future, we plan
to come up with better regularization constraints, e.g a dif-
ferentiable variant of L0 regularization similar to (Louizos
et al., 2017b).

Moreover, we can study more stable optimization proce-
dure for minimizing joint mutual information, which is a
well known research problem (Belghazi et al., 2018). With
this, we can then apply the model for causal discovery for
larger real world datasets.
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