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Abstract

Learning disentangled latent spaces while using
deep generative models remains a largely open
challenge for tasks such as image generation.
One narrower subset of this objective is to con-
sider the problem of semantic object disentan-
glement, where the goal is to allow for the hi-
erarchical generation of complex images by be-
ing able to first generate individual objects and
then being able to compose them together. In
contrast to past approaches in this domain, we
develop a novel and flexible method that directly
enforces such disentanglement. In practice, we
observe that our method achieves strong perfor-
mance on three synthetic datasets, providing very
good results on quality tests for disentanglement,
reconstruction, and interpretable image genera-
tion through substitution. Our results, while on
relatively simplified domains, provide a strong
proof of concept for our general approach.

1. Introduction
Deep generative models have proven to be incredibly adept
at synthesizing high quality instances of images (Karras
et al., 2017), audio recordings (Oord et al., 2016), and point
clouds (Li et al., 2018) through learning a mapping of these
high dimensional examples into a lower dimensional latent
space. However, while these learned latent spaces provide
simple sampling processes and compressed representations
for complex distributions, one common hindrance to their
broader utility is a lack of interpretability. That is, the
relationship between an example’s latent features and its
original representation remains convoluted and unintellig-
ble from a human perspective.

One commonly desired notion of interpretability for
learned representations is that of semantic disentangle-
ment. In this framework (Bengio et al., 2012), a learned la-
tent vector Z would ideally decompose into independently
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meaningful sub-vectors Z1, Z2, . . . , Zn where the substitu-
tion of any component Zi with Z ′

i would consistently alter
only a single salient aspect of the decoded output (i.e. the
image background, a person’s eye color, etc). Having such
a disentangled representation conveys many potential ben-
efits. Not only would it make the generative model and pro-
cedure more controllable, it could also help in sidestepping
the infamous mode-collapse problem (Arjovsky & Bottou,
2017) or facilitate later downstream tasks.

In this paper, we focus on the domain of images and nar-
row the goal of semantic disentanglement to what we call
semantic object disentanglement. This problem is centered
around the acknowledgment that many generative tasks re-
quire the composition of multiple generated objects into a
meaningful whole. For example, the majority of realistic
images contain more than a single person, building, or ad-
ditional entity. These distinct yet major sub-parts of the
overall image are what we refer to as objects, and their
presence and interactions in an image can be quite com-
plex. Because of this, an ideally disentangled represen-
tation would allow for image generation to be done in a
hierarchical fashion: being able to (1) generate individual
objects and to (2) compose them together in a realistic way.

To achieve this form of disentanglement, previous ap-
proaches have generally involved extra supervision in the
training process. In such methods, the training set needs
to be augmented with many variations of labelled object
compositions and extra penalties and used to enforce dis-
entanglement (Donahue et al., 2017). However, not only
do these approaches suffer from inconsistent performance,
finding reconstruction and disentanglement hard to jointly
perform, they also are expensive from a data collection and
labelling point of view. In contrast to these approaches,
we propose a new method which avoids these issues by
enforcing semantic object disentanglement in a strict fash-
ion, while also removing the need for an extensive paired
dataset.

Specifically, we build off an autoencoder framework, where
the key assumption is that the latent representation for a
complex image can be subdivided into features that corre-
spond to (1) the identities of individual objects and (2) the
contextual attributes (eg. spatial and rotational informa-
tion) for these objects. During our training process, given
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Figure 1. Our ultimate goal is to create a low dimensional, disen-
tangled representation of the input , separated by its constituent
objects and its semantic information.

knowledge about the existence of an image’s objects, we
can enforce the desired feature separation by encoding in-
formation about the individual objects separately. That is,
we distinctly encode identity information (using raw sub-
images) and semantic information (using representations
such as spatial masks) for each object, before concatenating
all sub-vectors into a final representation. Then, we ensure
that this representation is useful by allowing our decoder to
only access to information from this separately generated
final vector. If successful, we can then potentially gener-
ate images that control and successfully compose the exact
objects we want to include. Also, though we work with au-
toencoders, our approach can be applied to any underlying
generative model.

In the following sections, we first introduce the existing
work in this field. Second, we articulate in greater de-
tail our proposed approach, labelling the multiple high-
level components and describing their details more care-
fully. Finally we present some empirical evaluations of
our proposed method on three synthetic datasets of com-
posite images, each generated using base images from
MNIST, Fashion MNIST, and Fruit 360. Although these
datasets involve some key simplifications from fully nat-
ural images, we observe that the latent spaces learned by
our method achieves promising results compared to natu-
ral baselines for disentanglement, reconstruction, and in-
terpretable novel image generation.

2. Related Works
Deep Autoencoders (Baldi, 2011) and Generative Adver-
sarial Networks (GANS) (Goodfellow et al., 2014) have
been successful in generating realistic synthetic data sam-
ples in a wide range of settings (Lin et al., 2014; Oord et al.,
2016; Karras et al., 2017). However, the latent spaces in-
gested by these models are rarely interpertable or well un-
derstood without explicit class based conditioning (Mirza

& Osindero (2014). In the ensuing section, we review ex-
isting approaches for disentangled representations and se-
mantic decomposition of latent spaces.

Semantic decomposition of representations shares many
similarities to style transfer (Gatys et al., 2015) or novel
view synthesis (Avidan & Shashua, 1997). In general,
prior work attempts to explicitly disentangle a represen-
tation into dual components (i.e. style and content, time
and content, object-1 and object-2, and etc), or transfer one
component (i.e. style) from one input to another.

Zhu et al. (2017) propose Cycle-Consistent Adversarial
Networks which allow for style transfer by incorporating
additional structure and regularization by combining the
normal adversarial losses with cycle consistency losses
which ensure F (G(X)) ≈ X and G(F (Y )) ≈ Y (where
G : X → Y and F : X → Y ).

Analgously, Azadi et al. (2018) developed Compositional-
GAN as a method to perform object composition in con-
ditional image generation, generating images from two la-
tent sources without any prior information about the scene
layout. For two objects, given sets of images from each’s
marginal distribution, X and Y , as well as a set from their
joint distribution (containing both objects), C, this method
is able to generate realistic composite images containing
both objects. The variations of their method were able to
handle both paired training data (elements in C directly
correspond to a pair of elements from X and Y ) and un-
paired.

From a more representation centered perspective, Denton
& Birodkar (2017) present DrNET, a model for learning
disentangled representations from video through a predic-
tive autoencoder that factors each video frame’s latent rep-
resentation into two parts: 1) content: a time independence
component that remains constant through the entire clip,
and 2) pose: a time dependent component that captures
dynamic aspects of the clip. Donahue et al. (2017) bears
the closest resemblance to our work, and analyze seman-
tic decomposition in the context of facial photograph gen-
eration. They propose Semantically Decomposed GANs
(SD-GANs), in which the latent space Z is decomposed
into subspaces ZI and ZO, corresponding to the iden-
tity (i.e. the person in the photograph) and observational
(i.e. lighting, pose, etc) portions of an image respectively.
SD-GANs utilize a pairwise training scheme with siamese
networks (Bromley et al., 1993; Chopra et al., 2005), in
which each sample from the dataset corresponds to two
images with common ZI and distinct ZO. The discrimi-
nator is trained to reject pairs if 1) the generated images are
not photorealistic or 2) the generated images correspond
to different identities. Our work differs in several ways.
First, our segmentation-encoding-decoding architecture al-
lows for decomposition over multiple objects (not just ob-
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servation vs identity). Secondly, rather than relying on
siamese networks to enforce consistency in the latent space,
we use a shared encoder (described further below).

Disentanglement can also be achieved by reweighting the
traditional encoding/decoding objective. (Chen et al.,
2016) present InfoGan, which learns disentangled repre-
sentations by maximizing the mutual information between
a small subset of the latent variables and the observation.
(Higgins et al., 2017) propose β−VAE, which encourages
independence between latent variables. (Chen et al., 2018)
show that this success can be explained via a decomposi-
tion of the variational lower bound. (Kim & Mnih, 2018)
improve on the reconstruction quality of β−VAE by aug-
menting the objective with a penalty that encourages the
marginal distribution of representations to be factorial.

3. Methodology
Broadly, we propose a scheme for disentangling the latent
space by independently learning latent representations for
the objects in an image and their spatial relationships (se-
mantics). A high-level overview of our method is illus-
trated by 1.

Formally, our goal is to learn a disentangled latent space Z
(over Rs), a corresponding encoding function E : X → Z ,
and generative function G : Z → X . In this work, we con-
sider x ∈ X (over Rd to be an image consisting of multiple
distinct objects. The exact definition of an object depends
on the task setting. In a natural scene of a dining table,
objects could correspond to distinct items (silverware, in-
dividuals, etc). In a human profile picture, objects could
correspond to elements of the photo (hair, ears, eyes, etc).

In order for Z ∈ Z to be ’disentangled’, we should
be able to decompose Z into non-overlapping subspaces
Z1, ..., Zk ⊆ Z such that each Zi corresponds to a distinct
aspect of the generated image G(Z). For clarity, we refer
to each subspace as a group Gi, consisting of the indices
over which the subspace exists. Given two latent vectors
z1 and z2 differing only by group Gi, we should expect
the generated images G(z1) and G(z2) to only differ by
the aspect controlled by Gi. In this work, we disentangle
representations based on 1) the objects in the image, and
2) the spatial information contained in the images. Hence,
for a k−object image, Z is divided into k + 1 groups, cor-
responding to the k objects (G1, ..., Gk and Gk+1 corre-
sponding to spatial information.

We learn disentangled representations by solving a recon-
struction task over multi-object images. Rather than learn-
ing this reconstruction in an end-to-end fashion, we learn
reconstructions over the distinct groups G1, ·, Gk+1. We
now describe this process:

1. Object Detection: Given a multi-object image xi, we
apply an image segmentation technique such as Mask R-
CNN (He et al., 2017) to xi in order to identify the k ob-
jects contained in the image. Let xji denote the image corre-
sponding to the bounding box around object j. We rescale
x1i , ..., x

k
i to a fixed size.

In this work, we assume that image objects have already
been identified and that x1i , ..., x

k
i is provided. Though this

simplifies our task, the challenge of identifying x1i , .., x
k
i

is primarily a segmentation/object identification problem,
and beyond the scope of this project.

2. Latent Object Representation: We derive independent
latent representations for each identified object by solving
an object-specific reconstruction task (corresponding to the
light blue boxes in Figure 1). Broadly, our goal is to learn
a latent representation from which we reconstruct the ob-
ject. This representation should be completely independent
of any spatial information contained in the original image.
Applying the encoder to each object x1i , · · · , xki yields a set
of latent object specific representations z1i , · · · , zki .

3. Spatial Information: We explore simple methods for
capturing spatial relationships between objects in the orig-
inal image (e.g. the semantics). In this work, we consider
two types of spatial information: relative positions and ori-
entation.

In order to capture the relative positions of different ob-
jects, we leverage the original bounding boxes identified
in Step 1 from our image segments/object detector. We
construct an image mask, where pixels within the same
bounding boxes are assigned a fixed value, and all pixels
not contained in any bounding box are left blank. Figure 2
provides an illustrated example of this mask. In practice,
we find that is important to assign each bounding box to
a different pixel value (shading color). For simplicity, we
use pixel values of 1.0, 0.75 and 0.5 for the three different
bounding boxes in our setup.

We can use a similar approach for capturing the orienta-
tion of objects in the original image (e.g. their rotational
angle). For simplicity, we assume that the orientation an-
gle of the object is known1. We construct an angle mask
by first constructing a blank image with a colored arrow
stretching from the bottom edge to the top edge. We then
rotate this mask by the rotation angle for the object in the
original image, so that the head of the arrow in the mask
aligns with the top of the rotated object. Figure 5 provides
an example of this rotational mask.

In either case, we can flatten the generated mask and denote
it by the vector zk+1. In practice, we’ve found that rep-

1Given a base image angle, we can rotate the base image until
it most closely resembles the object’s orientation in the image,
thus giving us an estimate of the angle.
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resenting spatial information pictorally (i.e. with a mask)
produces far better results than simply encoding the (x,y)
positions of the bounding boxes. This is an interesting
question for future work.

More generally, we note that zk+1 could correspond to any
latent representation of spatial information contained in the
multi-object image, and could conceivably be generated by
a spatially focused encoder. We hope to explore this more
in future work.

4. Embedding Combination: Given the single object la-
tent representations z1i , · · · , zki and the spatial information
representation zk=1, we construct a combined multi-object
latent representation Zi =

[
z1i , ..., z

k+1
i

]
. The ordering of

object vectors zji must align with the pixel values. Hence,
the z1i must correspond to the object in the location speci-
fied by the bounding box with pixel values of 1.0, z2i must
correspond to the object in the location specified by the
bounding box with pixel values of 0.75, and etc.

5. Reconstruction: Finally, we learn a decoder G by mini-
mizing the reconstruction loss when computing G(Z). Im-
portantly, the loss from G(Z) is not propagated to the ob-
ject specific encoder. In essence, this ensures the disentan-
glement in our latent space. If the multi-object reconstruc-
tion loss were propagated to the object-specific encoder,
the object encoders may inadvertently learn spatial rela-
tionships between the objects, thereby increasing ’entan-
glement’.

4. Experimental Methodology
4.1. Problem Settings

In order to determine the feasibility of our approach, we
tested a set of varying complexity disentanglement prob-
lems by altering the complexity of the underlying objects.
In section 4.4 we examine our model’s ability to disen-
tangle spatial information. In section 4.5 we examine our
model’s ability to disentangle orientation-based semantic
information.

4.2. Evaluation Metrics

We will explore our model through the lens of reconstruc-
tion quality, level of disentanglement, and a substitution
test.

Reconstruction quality will be measured both in terms of
reconstruction loss when compared to a non-disentangled
model and in terms of a classifier test where a pre-trained
object detector is run on the reconstructed images. A high
accuracy on this test set will indicate that our reconstruc-
tion has high fidelity, as the generated image qualitatively
contains the right kind of object in the right location.

Input H ×W × C image
Conv Layer 64, (5,5), (2,2)
Activation Leaky ReLU

Conv Layer 128, (5,5), (2,2)
Activation Leaky ReLU

Dense Layer -
Output 1× 100 latent code

Table 1. Object Encoder Architecture

Disentanglement will be measured through a classification
task. We will train a support vector machine on image en-
codings and try to predict both the object class and the dis-
cretized semantic ”class” on both the object encodings and
the semantic encodings. We will consider our model to
have successfully disentangled these concepts if a trained
SVM is able to get high accuracy using object (seman-
tic) encodings for object (semantic) classification and near-
random accuracy when using semantic (object) encodings
for object (semantic) classification.

Finally, we will test the model’s ability for ”substitution”.
We define substitution to be a latent encodings ability to
have a subsection swapped with a different encoding and
to produce the desired outcome. This will be measured in
the same way that reconstruction quality was measured.

These three qualities should imply that not only is our gen-
erative model able to generalize, but that it has successfully
disentangled the desired concepts.

4.3. Model Details

Our design is to pair a convolutional object encoder and
a convolution semantic encoder with two separate decon-
volutional decoders, one for simple object generation and
another for multi-object/semantically complex generation.
We reason that the encoder will be forced to limit object
information to a single sub-vector by the simple object de-
coder which will in turn force the complex decoder to re-
spect the separation of object encodings.

For reproducibility, we have included the individual model
architectures in Tables 2, 3 and 4. Each convolutional layer
has its number of channels, kernel size, and stride size pre-
sented in the second column. Let H,W,C represent a sin-
gle object image’s height, width, and number of channels
respectively. Let H ′,W ′, C ′ represent a complex image’s
height, width, and number of channels. Finally, let n rep-
resent the number of objects in the complex image. All
non-included parameters are tuned to match the requisite
output/input shapes.

The loss function used was a standard Mean Square Er-
ror (MSE) used to train autoencoders, with the loss ap-
plied to the discrepancy between the input and the recon-
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Input H ′ ×W ′ × C ′ image
Conv Layer 64, (5,5), (2,2)
Activation Leaky ReLU

Conv Layer 128, (5,5), (2,2)
Activation Leaky ReLU

Dense Layer -
Output 1× 100 latent code

Table 2. Semantic Encoder Architecture

Input 1× 100 latent code
Dense Layer 1× 12, 544 output
Batch Norm -
Activation Leaky ReLU

DeConv Layer 128, (5,5), (·, ·)
Batch Norm -
Activation Leaky ReLU

DeConv Layer 64, (5,5), (·, ·)
Batch Norm -
Activation Leaky ReLU

DeConv Layer 1, (5,5), (·, ·)
Activation ReLU

Output H ×W × C image

Table 3. Single Object Decoder Architecture

Input (n+ 1)× 100 latent code
Dense Layer 1× (·) output
Batch Norm -
Activation Leaky ReLU

DeConv Layer 128, (5,5), (·, ·)
Batch Norm -
Activation Leaky ReLU

DeConv Layer 64, (5,5), (·, ·)
Batch Norm -
Activation Leaky ReLU

DeConv Layer 1, (5,5), (·, ·)
Activation ReLU

Output H ′ ×W ′ × C image

Table 4. Complex Decoder Architecture

Figure 2. In order to encode a complex spatial image, we split it
into object images and a spatial mask. These components are used
to generate the reconstructed image on the right.

structed images. We used the Adam optimizer (Kingma
& Ba, 2015) and the gradient was allowed to flow from
both decoders to the shared encoder. All of this was imple-
mented in the Tensorflow framework (Abadi et al., 2016)
and every experiment was run on a GTX 1060 GPU with
6GB of memory. The training for each of the results below
were achieved with 10,000 iterations with a batch size of
256 for both input datasets.

4.4. Spatial Setting

In order to examine our models ability to disentangle an
object encoding from a spatial encoding, we created two
datasets, one made of MNIST digits and the other made of
Fashion MNIST articles of clothing. We added spatial vari-
ability by random selecting squares on a 3 × 3 grid to be
filled with randomly selected objects from these datasets.
We then provided the object encoder with the cropped ob-
ject images and the semantic encoder with the spatial mask.
The pipeline for reconstructing such an image can be seen
in Figure 2.

4.4.1. RECONSTRUCTION

As can be seen in Table 5, our reconstruction error is
considerably higher on unseen data than the typical non-
disentangled autoencoder. While on its own this would be
troubling, our classification results in Table 6 and the ran-
domly selected instances in Figure 3 show that this may be
caused by the fragility of MSE to small perturbations, such
as due to object translation, and not a true weakness of our
model.

Spatial Reconstruction MSE
MNIST-Baseline 0.006449355
MNIST-Spatial 2405.2346

fMNIST-Baseline 0.0069138384
fMNIST-Spatial 4510.6846

Table 5. Reconstruction error on held-out test set.
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Spatial Reconstruction Classification accuracy
MNIST-Baseline 0.862
MNIST-Spatial 0.910

fMNIST-Baseline 0.546
fMNIST-Spatial 0.586

Table 6. Classification accuracy on held-out test set.

Figure 3. Though the reconstruction loss is markedly different be-
tween the baseline and our model, the qualititive results show little
difference.

4.4.2. DISENTANGLEMENT

In order for a encoding to be consider disentangled, it must
contain little if any information about the features it is ”dis-
entangled” from. One way to test this is to train a classifier
on encodings for both the feature they are supposed to pre-
dict and the features they shouldn’t be able to predict. For
these tests, we trained a simple SVM to predict either the
object class (i.e. which digit for MNIST and which article
of clothing for Fashion-MNIST) and a discretized version
of their spatial information. To discretize the spatial infor-
mation, we selected 10 spatial masks at random and gen-
erated a dataset including only these masks with each label
corresponding to the image’s spatial mask.

ID Encodings Train Test
MNIST-BASELINE 0.9952 0.978

MNIST-Spatial 0.9975 0.9768
fMNIST-BASELINE 0.9480 0.8620

fMNIST-Spatial 0.9739 0.8628

Table 7. Classification accuracy for object IDs using object em-
beddings.

It can be seen in Table 7 that our object identity encod-
ings match the performance of a non-disentangled version
in both training and testing. This indicates that our model

contains as much information about the object class as the
baseline and performs significantly better than randomly
guessing a class.

Spatial Encodings Train Test
MNIST-BASELINE 0.9587 0.8960

MNIST-Spatial 1 1
fMNIST-BASELINE 1 1

fMNIST-Spatial 1 1

Table 8. Classification accuracy for spatial class using semantic
embeddings.

Table 8 shows that our spatial embeddings contain enough
information to perform as well as the baseline in this sim-
plified case. Of note is that the MNIST-Spatial encoding
outperforms its baseline. This could be because the base-
line encodings are forced to devote more attention to the
identity encoding and does not retain as much spatial infor-
mation as a dedicated encoding.

ID Encodings Train Test
MNIST-BASELINE 0.9587 0.8960

MNIST 1 0.12
fMNIST-BASELINE 1 1

fMNIST 1 0.112

Table 9. Classification accuracy for spatial class using object em-
beddings.

Finally, our object ID encodings contain nearly no infor-
mation about the spatial information, as can be seen by the
test accuracy in Table 9. This stands in stark contrast to the
completely accurate predictions from the spatial encodings
discussed about.

These tests taken together bolster the intuition that our ar-
chitecture disallows any mixing of object identity informa-
tion and spatial semantic information.

4.4.3. SUBSTITUTION

Figure 10

Spatial Reconstruction after Substitution Classification accuracy
Ground Truth 0.862

MNIST-Spatial 0.910
fMNIST-Baseline 0.546
fMNIST-Spatial 0.586

Table 10. Classification accuracy on held-out test set after substi-
tuting an object identity vector.
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Figure 4. Our model’s disentangled latent space allows for the
substitution of one encoding for another without altering the rest
of the generated image.

4.5. Orientation Setting

In order to test our model’s ability to disentangle orienta-
tion information from object identity information, we cre-
ated a dataset consisting of rotated MNIST digits. Though
we provide the angular information since we generated the
rotated images, this could be more generally done using a
technique such as RotNets (Gidaris et al., 2018). We then
provided the object encoder with the reoriented object im-
age and the semantic encoder with the angle mask. The
pipeline for reconstructing such an image can be seen in
Figure 5.

4.5.1. RECONSTRUCTION

Figure 5. In order to encode an oriented image, we split it into an
object image and an angle mask. These components are used to
generate the reconstructed image on the right.

Though the disparity is less drastic than in the previous
setting, our reconstruction loss is still considerably higher
than the baseline in Table 11. This gives us reason to once
again inspect randomly selected images in Figure 6. We
did not train a classifier for this reconstruction task due to
the relatively minor difference in reconstruction error.

Angle Reconstruction MSE
MNIST-Baseline 0.0036420375

MNIST-Angle 0.014301385

Table 11. Reconstruction error on held-out test set.

Figure 6. While the reconstruction error is worse with our model,
the reconstructed images preserve finer detail.

4.5.2. DISENTANGLEMENT

Much like our spatial disentanglement tests, our orienta-
tion tests show that while the encodings of relevant fea-
tures are highly predictive of their encoded feature while
non-predictive of other features.

ID Encodings Train Test
MNIST-BASELINE 0.9952 0.9780
MNIST-Rotation 0.9985 0.9736

Table 12. Classification accuracy for object IDs using object em-
beddings.

Angle Encodings Train Test
MNIST-BASELINE 0.9784 0.9212

MNIST-Rotation 1 1

Table 13. Classification accuracy for angle class using angle em-
beddings.

ID Encodings Train Test
MNIST-BASELINE 0.9784 0.9212

MNIST-Rotation 0.6649333333 0.1184

Table 14. Classification accuracy for angle class using object em-
beddings.

4.5.3. SUBSTITUTION

Without the trainer classifier for our substitution test, we
are left with the qualitative task of judging our reconstruc-
tions when sections of the latent code have been substituted
for each other. An example of our results can be seen in
Figure 7.
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Figure 7. Our model allows for the plausible generation of a novel
combination of a object/orientation pair unseen in training.

4.6. Color Images

While our experimentation with color images are too pre-
liminary to be detailed as thoroughly as the experiments
above, our early results are promising as can be seen in
Figure 8. While these results can be achieved simply by
changing the channels on each network to accommodate
color, we hope to expand our techniques detailed in this
paper to separate color information from object identity.

Figure 8.

5. Conclusions
Our initial results show promise for the use of deep gen-
erative models to learn a latent space encoding that allows
for the joint generation of individual and multi-object in-
stances. Extracting features in a hierarchiecal fashion al-
lows us to learned semantic encodings without the need for
large paired datasets to distinguish between features of in-
terest. Furthermore, by forcing our model to learn a com-
pletely disentangled latent representation, we are able to
perform the highly desirable task of substitution without a
loss in generative quality.

While in this paper we investigated only simplified versions
of our ultimate goal, we have shown that disentangling se-
mantic objects is possible when spatial or angular informa-
tion is given. In our next steps, we hope to extend these
techniques to more complex datasets, featuring a variable

number of objects and more intricate composition. In addi-
tion, our ultimate hope is for this to develop into a general
framework for semantic object disentanglement, applicable
regardless of generative model or domain.
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