
10-708 Final Report:
Investigating Max-Entropy Latent-Space Policies

for Hierarchical Reinforcement Learning

Siddharth Ancha (sancha) 1 Mengxiong Liu (mengxiol) 1 Xingyu Lin (xlin3) 1

Abstract
In this paper, we investigate previous work
Haarnoja et al. (2018a) that combines maximum
entropy (Max-Ent) reinforcement learning and
hierarchical reinforcement learning (HRL). This
formulates HRL as inference over probabilistic
graphical models with a particular latent vari-
able structure. Such formulation enables train-
ing of multiple policies in a stacked, hierarchical
fashion. We hypothesize that the reason that a
stacked policy outperforms the low-level policy
is that the low-level policy provides a good be-
haviour policy which eases exploration. We pro-
vide theoretical analysis for the effect of the be-
haviour policy in tabular cases and propose a new
baseline which uses a low-level policy purely as
the behaviour policy for training another policy.
We find that our baseline outperforms the latent
space. We additionally provide and analyze vi-
sualizations of the learned low-level, latent space
policy, and we find a surprising lack of diversity
in low-level skills.

1. Introduction

In this paper, we aim to investigate a hierarchical reinforce-
ment learning framework built on a probabilistic graphi-
cal model formulation of maximum entropy reinforcement
learning. Maximum Entropy RL (Todorov, 2007; Ziebart
et al., 2008; Haarnoja et al., 2018c; Levine, 2018) frames
reinforcement learning as inference over a particular graph-
ical model (Haarnoja et al., 2018c; Levine, 2018). The
states and actions of the Markov Decision Process (MDP)
act as nodes of the model, while the MDP transition func-
tion defines the edges. It can be shown that optimizing
the standard reinforcement learning objective, with an ad-

1Carnegie Mellon University, Pittsburgh, PA 15213, USA.

10708 Class Project, Spring, 2019.
Copyright 2019 by the author(s).

Figure 1. From (Haarnoja et al., 2018a). (a) regular graphical
model for max-ent RL learning, (b) learning a lower-level pol-
icy by reparametrizing π(at | st) in terms of ht with a prior, (c)
viewing reparametrization as original problem with modified dy-
namics for higher-level policy learning.

ditional entropy term, can be formulated as variation infer-
ence over this model. Max-Ent RL has shown to be useful
for robustness, exploration, diversity and compositionality
of behaviors.

Haarnoja et al. (2018a) extend this graphical model, us-
ing latent variables, as a framework for hierarchical rein-
forcement learning (HRL). Multiple layers of the graphical
model, each representing a sub-policy, can be stacked on
top of each other, and connected via latent variables. This
resembles a Deep Belief Network (Hinton & Salakhutdi-
nov, 2006). Much like a DBN, Haarnoja et al. (2018a)
train the model layer-wise. Layers that are trained first rep-
resent lower-level sub-policies. These lower-level policies
induces behaviors which can be used by higher-level sub-
policies to more easily learn complex tasks.

Specifically, Haarnoja et al. (2018a) re-parametrize the ac-
tion space of the lower-level policy function in terms of
latent variables ht, that are sampled from uniform priors
(see fig. 1(b)). This model can then be viewed as simi-
lar to the original graphical model for regular Max-Ent RL
(shown in fig. 1(a)), where latent variables ht act as actions
to be learned by a higher-level policy (see fig. 1(c)). Im-
portantly, the dynamics of fig. 1(c) has been modified as
the lower-level policy is now ‘embedded’ into the dynam-

10-708 Final Report

ics. This means that the dynamics has been biased to fol-
low behaviors produced by the lower-level policy. Usually
lower-level policies are trained on auxiliary rewards that
are correlated with, or helpful to learning the true reward
function by a higher-level policy.

We ask the question: Why is a hierarchical policy stacked
in such a way performs better than a single-layer policy?
We hypothesize that the reason that a stacked policy out-
performs the low-level policy is that the low-level policy
provides a good behaviour policy which eases exploration.
This begs the following question: if one has already trained
a lower-level policy, then, compared to using that for re-
parametrization or modified dynamics, would learning a
new policy with the pre-trained low-level policy as the be-
haviour policy yield a comparable or even better policy?

In this work, we provide theoretical analysis for the effect
of the behaviour policy in tabular cases and compare our
proposed baseline with the hierarchical latent space policy
(Haarnoja et al., 2018a). We find that our baseline outper-
forms the latent space. We additionally provide and an-
alyze visualizations of the learned low-level, latent space
policy, and we find a surprising lack of diversity in low-
level skills.

2. Background & Related Work

2.1. Maximum Entropy Reinforcement Learning

Previous works (Todorov, 2007; Ziebart et al., 2008;
Levine, 2018) have shown that optimal control can be
framed as a probabilistic inference problem. This leads to
Maximum Entropy RL, where the agent’s goal is to jointly
maximize the expected return and entropy of the policy.
Maximum Entropy RL provides several benefits, including
but not limited to structured exploration (Haarnoja et al.,
2018c; 2017), learning diverse skills (Eysenbach et al.,
2018) and skill composition (Haarnoja et al., 2018b) for
high dimensional continuous control tasks. Under the Max-
imum Entropy RL framework, the probability of choosing
an action is proportional to the exponential of Q-function,
i.e. the optimal policy follows a Boltzmann distribution,
which could potentially be highly multi-modal.

Haarnoja et al. (2017) proposed Soft Q-learning (SQL)
based on Soft Q-iteration. It performs temporal difference
to learn the Q-function of the optimal maximum entropy
policy. However, given that the action space is contin-
uous and the Q-function is highly multi-modal, it is not
reasonable to approximate the optimal policy by distribu-
tions with limited expressiveness, like the Gaussian dis-
tribution. Hence, SQL employs an actor parameterized
by a neural network to sample from the optimal policy

using Stein Variational Gradient Descent (Liu & Wang,
2016). Haarnoja et al. (2018b) adopts SQL (Haarnoja et al.,
2017) to compose multiple policies for different tasks by
summing all the Q-functions and uses a sampler actor to
draw samples from the resulting Boltzmann distribution.
Haarnoja et al. (2018b) also provide a sub-optimality bound
of the composed policy compared to the policy that directly
maximizes the summed reward. Haarnoja et al. (2018c)
propose soft actor-critic based on soft policy iteration that
results in a DDPG (Lillicrap et al., 2015) like update rule
with additional policy entropy term in the target Q-function
and target value function. In contrast to the sampling tech-
nique used in SQL, SAC parameterizes a Gaussian policy
and minimizes the KL-divergence between the Gaussian
policy and the optimal policy. SAC is observed to exhibit
efficient exploration and improved convergence on several
benchmark tasks. Eysenbach et al. (2018) adopt SAC to
perform unsupervised skill discovery by maximizing an in-
formation theoretic objective and observes emergence of
diverse skills even without any reward function.

2.2. Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning is usually based on
the option framework (Sutton et al., 1999). In this frame-
work, an option consists of a lower-level policy and a state
dependent termination function which decides when to ter-
minate the lower-level policy and hand the control over to
the higher-level policy. The latter provides the next option
to execute.

While the high-level policy can be learned by maximiz-
ing the external reward in a semi-MDP, it remains an open
problem on how to obtain the option, or the lower-level
policy. Some previous works manually design the lower-
level policy, e.g. motion primitives in the context of robotic
locomotion (Heess et al., 2016). This approach, while ef-
fective, excessively relies on domain specific knowledge
and lacks flexibility. Another approach is to learn both the
high-level policy and the low-level policy in an end-to-end
manner, such as the option-critic framework (Bacon et al.,
2017), which learns the lower-level policy and the termi-
nation function based on the advantage function in a con-
tinuous way. However, often times, the end-to-end trained
policy degenerates into a flat policy as the higher-level pol-
icy keeps using only one option and thus loses the benefit
of using a hierarchical policy structure.

Many heuristics have also been proposed to learn the op-
tion, such as maximizing the mutual information between
the option and the state distribution (Florensa et al., 2017),
bounding the mutual information between the actions and
top-level actions (Daniel et al., 2012), and using entropy
regularization to ensure diversity in lower-level options

10-708 Final Report

(Bacon et al., 2017).

Haarnoja et al. (2018a) similarly adopt Max Entropy RL
to provide diversity in the lower-level policy. However,
a notable difference between Haarnoja et al. (2018a) and
the option framework is that, Haarnoja et al. (2018a) does
not have the usual temporal abstraction seen in the option
framework. Initially, the ‘lower-level’ policy is learned by
directly optimizing the external reward and augmented re-
wards, with latent random variables as additional input.
Then, layers of a ‘higher-level’ policy can be stacked on top
of the base policy that control the latent variables. There
does not exist a higher level policy on the semi-MDP which
only makes a decision after a number of time steps. This
separation from the previous frameworks lead to our mo-
tivation for providing a better understanding of composi-
tionality or hierarchy in this paper. For example, is there
semantic meaning for the learned latent variables and the
learned base policy. What benefit does the hierarchical pol-
icy bring to some MuJoCo tasks which do not exhibit a
natural compositionality?

2.3. Control as Inference

(Levine, 2018) cast control problem to posterior inference
on graphical model. The graphical model is composed
of state action pairs at every time step st, at and an as-
sociated optimality variable Ot. The transition dynamics
p(st+1|st, at) and the optimality condition p(Ot|st, at) are
represented as edges where p(Ot = 1|st, at) ∝ er(st,at).
The probability of optimal trajectory conditioned on the op-
timality variable defined as the following

p(τ |O0:T) ∝ p(s0)

T∏
t=0

p(at)p(st+1|st, at) exp(r(st, at))

(1)
From the above expression, we can infer the optimal action
at a given state as

p(at|st,Ot:T) ∝ p(Ot:T |st, at)
p(Ot:T |st)

=
βt(st, at)

βt(st)
(2)

where

βt(st, at) =

∫
S
βt+1(st+1)p(st+1|st, at)p(Ot|st, at)dst+1

(3)

However, directly inferring optimal action from the above
expression is problematic. First, in practice the action lies
in a high dimensional continuous space and may not have
a well defined parametric form, which makes it intractable
to sample from. Second the above expression assumes that
the transition dynamics can also be optimized to favor the
optimal actions, which in practice is not true. To satisfy the

constraint that the optimal action cannot modify transition
dynamics and to make sure the policy follows a tractable
parametric form, define the variational distribution of the
optimal trajectory as the following

q(τ) = p(s0)

T∏
t=0

π(at|st)p(st+1|st, at) (4)

Then we arrive at the following evidence lower bound

log p(O0:T) ≥ −DKL(q(τ)‖p(O0:T , τ)) (5)

With a uniform action prior, the KL divergence can be re-
duced to the maximum entropy RL objective

Eτ∼ρπ(τ)[

T∑
t=0

r(st, at) +H(π(·|st)) (6)

This objective is can be optimized using Soft Q-learning
(Haarnoja et al., 2017) or SAC (Haarnoja et al., 2018c).

3. Methods

3.1. Latent Variable Policy for Hierarchical
Reinforcement Learning

(Haarnoja et al., 2018a) extend the standard graphical
model 1a by introducing a hidden variable ht and condi-
tion the action at on ht and st at each state st. At each time
step, ht is first sampled from its prior p(ht), then sample an
action from π(at|st, ht). Therefore, a new set of optimality
variable Pt can be introduced for the hidden states and Pt
may or may not be the same as Ot depending on the tasks.
This induces a new graphical model 1b, which naturally
can be considered as a hierarchical RL framework. The
high level policy is formulated as the posterior distribution
of ht given optimality variable Pt, similar to the traditional
setting 1a where the policy is formulated as approximat-
ing the posterior distribution of at given optimality variable
Ot. Then the low-level policy is formulated as approximat-
ing the distribution of at given st and ht. More layers of
hidden variables can be added in this graphical model to
form a multi-level hierarchical RL framework. Note that
integrating at out from 1b we arrive at a reduced graphi-
cal model 1c, which resembles the graphical model in 1a.
Note that ht in 1c is equivalent to at in 1a and Pt in 1c is
equivalent to Ot in 1a. Therefore, 1c can be formulated as
a new MDP with ht as actions and at embedded into the
environment. The new transition dynamics then becomes

p(st+1|st, ht) =

∫
A
p(st+1|st, at)π(at|st, ht)dat (7)

To mitigate the intractability of integrating over at, the high
level policy π(at|st, ht) is parameterized as a determinis-
tic function in practice give st and ht. With the low-level

10-708 Final Report

Figure 2. LSP Policy Network (Haarnoja et al., 2018a). The yel-
low layers are fully connected layers that encode the state st. The
green layers are coupling layers used in Real NVP.

Figure 3. Real NVP (Dinh et al., 2016)

policy embedded into the environment, the new MDP can
potentially become an easier problem.

3.2. Policy Architecture

The policy is parameterized as a deterministic function
at = f(st, ht). Suppose f is a bijective function with re-
spect to at, ht but not necessarily st, then the density of at
can be expressed using a change of variable formula

π(at|st) = p(ht)|det(
df(ht; st)

dht
)|−1 (8)

To ensure the transformation from ht to at is invertible and
Jacobian is tractable, Haarnoja et al. (2018a) adopted Real
NVP Dinh et al. (2016) architecture 3. The policy is com-
posed of a sequence of coupling layers. Each of the cou-
pling layers applies a invertible transformation by scaling
and adding an offset to some dimensions of the input vec-
tor conditioned on the other dimensions of the input vector
while keeping the other dimensions intact. Let x be the
input vector of the coupling layer of dimension D, y be
the output of coupling layer also of dimension D, d be the
partition dimension. The coupling layer performs the fol-
lowing transformation

{
y1:d = x1:d

yd+1:D = xd+1:D � exp g(x1:d)) + t(x1:d)
(9)

where g and t can be arbitrary complex functions and not
necessarily invertible. The inverse transformation is then{

x1:d = y1:d

xd+1:D = (yd+1:D − t(y1:d))� exp(−s(y1:d))
(10)

And the jacobian of the forward transformation is

∂y

∂xT
=

[
Id 0

∂yd+1.D

∂xT1:d
diag(exp[s(x1:d)])

]
(11)

Note that after one coupling layer of transformation, half of
the input vectors are kept intact. To mitigate this problem,
Dinh et al. (2016) performs a switch of grouping after each
coupling layer, i.e. transforming the set of dimensions that
are kept intact in the previous layer, to make sure all hidden
units have gone through some nonlinear transformation, as
illustrated in 3. The hidden state ht is transformed to action
at through a sequence of coupling layers. To ensure the
action also depend on the state st and to guarantee the ex-
pressiveness of the policy network, Haarnoja et al. (2018a)
also condition the function g and t on state st. The forward
transformation then becomes{
x1:d = y1:d

xd+1:D = (yd+1:D − t(y1:d, st))� exp(−s(y1:d, st))
(12)

as illustrated in 2.

3.3. Full Algorithm

We start by training the lowest level policy directly on the
original MDP by optimizing the maximum entropy ob-
jective stated above using SAC Haarnoja et al. (2018c).
Then we freeze the low-level policy and embed it into
the environment. After that the hidden states become the
new actions. The new reward functions then becomes
r(st, f(st, ht)) and the transition dynamics is becomes as
p(st+1|st, ht) = p(st+1|st, f(st, ht)). The higher level
policy is then trained under the transformed MDP using
SAC. We can stack more layers on top of the higher level
policy to form a multi-level policy and train all levels in the
same fashion described above.

3.4. Interpretations

We propose two possible interpretations of the benefits of
stacking higher level policies on top of lower level policies.
First, low-level policy transforms the environment such that
learning from the transformed environment is easier for the
high level policy. Consider the case where low-level policy
is initialized to a random policy, then learning the higher
level policy on the transformed environment is no easier

10-708 Final Report

than learning the lower level policy. However, if the lower
level policy is initialized to one that is close to the optimal
policy, even a random higher level policy still manages to
achieve high total return on the transformed environment.
Due to the invertibility of the all levels of policies, the
higher level policy can learn to correct mistakes learned by
lower level policies. Another explanation is that the lower
level policy provides a good behavior policy to the higher
level policy. Suppose the transformation at = f(st, ht) is
initialized to an identity mapping from ht to at, then ex-
ecuting the high level policy is equivalent to executing the
low-level policy. Note that it is feasible to initialize the high
level policy as an identity mapping since we can initialize
the parameters of the g and t to be all close to 0. Then
the low-level policy can be considered as a behavior policy
to the high level policy. To study how much does each of
two factors contribute to the benefits of LSP, we propose
a comparison to disentangle the two factors. Specifically,
we propose to train a LSP with one level of hierarchy from
scratch with pre-trained behavior LSP also with one level of
hiearchy. We hypothesize that the improved performance
introduced by stacking extra layers of latent space policy
might be merely because of a good initialization provided
by the low-level policy. We’d like to see if we are able
to achieve similar performance using a good initialization
without introducing extra hierarchies. Given a pre-trained
policy and its value and Q function, we’ll train a new policy
πφ, its value function Vψ and Q function Qθ, from scratch
using pre-trained policy πφ̄ as behavior policy. First, we’ll
use the behavior policy to collect trajectories to fill in the
replay buffer and use the state action pairs sampled from
the replay buffer to perform temporal difference update on
πφ, Vψ, Qθ. After burning in for T iterators, we’ll start fill-
ing in the replay buffer with trajectories collected by the
new policy πφ to continue updating πφ, Vψ, Qθ. We’ll fol-
low the update rule in SAC (Haarnoja et al., 2018c). The
trajectories collected by the behavior policy gives the new
policy a good initialization while T prevents the new policy
πφ from saturating to the behavior policy πφ̄.

3.5. Analysis

How much does a good behaviour policy help with pol-
icy learning? Intuitively, a good behaviour policy guides
the exploration towards states with high return. In this sec-
tion, we attempt to analyze the return in the simplest tabular
cases and show that, if the behaviour policy is already opti-
mal, the learning of the value function will be exponentially
fast with respect to the number of samples.

3.5.1. PROBLEM DEFINITION

We start with a discrete-time finite-horizon Markov de-
cision process (MDP), with a finite state set S =
{s1, . . . , sN} and a finite action set A = {a1, . . . , aM}.
For simplicity, we assume that the environment has a de-
terministic transition dynamics st+1 = f(st, at), and a
bounded reward function |r(st, at)| ≤ R. Some other nota-
tions include: ρ0 : S → R+ is the distribution of the initial
state s0, γ ∈ [0, 1] is the discount factor and T is the length
of a horizon. The value function is defined by the accumu-
lated, discounted future return at state s, follow policy π:
Vπ(s) = Eπ[Σ∞i=t+1γ

i−t−1Ri|St = s]. There always exits
a deterministic optimal policy, denoted as π∗(st).

3.5.2. LEARNING WITH OPTIMAL BEHAVIOUR POLICY

CONVERGES EXPONENTIALLY

In the tabular MDP case, following a certain policy, the
probability of a trajectory τ = (s0, a0, s1, . . . , sT) can be
written as

p(τ) = ρ0(s0)

T−1∏
t=0

π(at|st)p(st+1|st, at).

We can then calculate the marginal distribution for each
state p(s) as:

p(s) =

T∑
t=0

p(st = s)

=

T∑
t=0

∑
s0

∑
a0

· · ·
∑
at−1

∑
at+1

· · ·
∑
sT

p(τ = (s0, a0, . . . , st = s, . . . , sT))

(13)

We present our finding in the following lemma:

Lemma 1. Assume that the optimal policy π∗ is used as
the behaviour policy and the tabular Q function Q̂(s, a)
is initialized pessimistically, i.e. Q̂(s, a) ≤ −TR. When
using Monte Carlo method to learn the Q function with D
samples, with a probability of at least

1−
N∑
i=1

[
1− p(si)

]D
,

where si is the ith state, the policy derived from Q̂ will be
the same as the optimal policy.

Proof. In the tabular case with deterministic transition dy-
namics and a deterministic optimal policy, we can see that
we only need one trajectory in order to determine the Q
values for all the state action pairs encountered on this tra-
jectory, simply by recording the expected future return for

10-708 Final Report

Figure 4. Lower-level policy learned for the multi-direction ant environment; the reward is proportional to the velocity obtained by the
ant regardless of the direction of motion. We find that the ant learns to only move in one specific direction (bottom-left), for multiple
policy rollouts.

Figure 5. Training curve for ant in multi-directional setting where
reward is given for attaining high velocities.

each pair. Assume that a state s is visited and a∗ = π∗(s).
As π∗ is deterministic,

Q̂(s, a∗) ≥ −RT ≥ Q̂(s, a),∀a 6= a∗.

Thus, we can see that once a state is visited by the be-
haviour policy, the learned Q function derived from this
state will already yield the optimal action, i.e.

argmaxaQ̂(s, a) = π∗(s).

To derive the full optimal policy from the learned tabular Q
function, we simply need to cover all the states:

P (Visit all states with D samples)

= 1− P (One state is not visited)

≥ 1−
N∑
i=1

P (si is not visited)

= 1−
N∑
i=1

[
1− p(si)

]D
(14)

As each of the term
[
1 − p(si)

]D
goes to zero exponen-

tially with respect to D, we can also approach the opti-
mal policy with the learned Q function at an exponential
rate. The reason we can achieve this is that the behaviour
policy is already optimal and thus we do not need to do

(a) Ant (rllab) environment. (b) Humanoid (rllab) envi-
ronment.

Figure 6. Visualization of the mujoco environment.

any exploration and only focus on learning Q function on
state action pairs that achieve the highest return. While
our analysis here does not apply to the real cases where
the behaviour policy is not optimal, the MDP is continu-
ous and has stochastic dynamics, we hope to emphasize the
fact that having a good behaviour policy greatly reduces the
complexity in exploration and thus motivates our proposed
baseline for SAC with latent space policy.

4. Experiments

We modify the code from
https://github.com/haarnoja/sac. We
run our experiments on two Mujoco environments, ant
(rllab) and humanoid (rllab), as shown in Figure 3. We
first train a 2-layer latent space policy (LSP) for either
3 million steps or 6 million steps on humanoid. Then
we freeze the low-level policy, add an additional level of
2-layer LSP and train for another 3 million steps for each
of the trained lower level policy. A similar procedure is
done for the ant environment, by first training a lower level
LSP for 1.5 million steps and 3 million steps and then train
for another 3 million steps with a stacked LSP on top of
it. We observed that for both ant and humanoid, adding
another level of policy does not introduce any observable
improvement but we also did not observe any performance
drop as observed in Figure 8.

10-708 Final Report

(a) Training curve with a 2-layer latent space
policy.

(b) Training curve with two 2-layer LSP,
starting with 1.5M time steps

(c) Training curve with two 2-layer LSP,
starting with 3M time steps

Figure 7. Training curves on Ant (rllab).

4.1. Multi-directional low-level Policy

Haarnoja et al. (2018a) perform an experiment where they
train a low-level policy in the ant environment for a reward
that is not the same as the final reward to be maximized.
Basically, they train an agent in the ant environment to learn
a diverse range of behaviors that would be useful and make
it easier to learn other reward functions.

The setup of the experiment is as follows. The goal is for
an ant that is bounded by a maze, to navigate towards cer-
tain goals. This requires the ant agent to both locomote,
i.e. learn to control its actuators to move around. Addi-
tionally, it needs to direct this motion towards navigating
to specified goals. Haarnoja et al. (2018a) train a two-level
hierarchical policy to achieve this.

First, they train the ant, in the absence of a grid. The reward
is proportional to the magnitude of the velocity achieved by
the ant, regardless of the direction. This encourages the ant
to move in a some direction instead of struggling to move
while staying put.

Then, a higher-level latent space policy is trained to
navigate the ant in a maze, using the low-level, multi-
directional latent space policy. Because multi-directional
navigation is already learnt, the hypothesis is that it would
be easier to learn navigation on top of locomotion. We per-
form an experiment to test this idea.

We trained the low-level policy with a reward to maximize
velocity. We are able to reproduce and even surpass the re-
sults reported in (Haarnoja et al., 2018a) (see figure fig. 5).

An important assumption that is made in the hypothesis is
that the behaviors that are learnt by the low-level policy are
diverse. This is essential because the higher level policy
accesses the environment via the low-level policy. If the
low-level policy does not exhibit behaviors that are crucial
to performing the higher level task, it might take a long
time for the agent to learn. Additionally, (Haarnoja et al.,
2018a) justify using soft actor-critic (SAC (Haarnoja et al.,
2018c)) because it encourages learning of diverse behaviors
by simultaneously maximising entropy of actions.

Figure 8. Training curves on Humanoid. The starting point of be-
havior policy curve and high level policy curve denote the number
of low-level policy has been trained.

However, we found that the learned behavior of the agent is
not diverse. We visualize the behavior of the trained agent
and show it in figure fig. 4. We find that the agent has
successfully learned to attain high velocites. However, it
only moves in a certain fixed direction. On repeated roll-
outs of the policy with varying random seed, the agent con-
sistently proceeds to move in the left or bottom-left direc-
tion. This shows that low-level policies are not learning
diverse behaviors as we would have expected. Hence it is
not clear how and where gains from the hierarchical latent
space framework reported in Haarnoja et al. (2018a) come
from.

4.2. Training with pre-trained behavior policy

In this experiment, we compare the performance a one level
policy, a multi-level policy and our proposed one level pol-
icy trained with behavior policy on Humanoid environment
8. The low-level policy is a one level LSP trained from
scratch, as shown in orange. The two level policy is trained
by stacking another layer of LSP onto a trained policy after
a certain number of training steps with the low-level policy
frozen, as shown in blue. The one level LSP is training a
pretrained one level LSP as behavior policy. The behav-

10-708 Final Report

ior policy is used in the following way – during the first
1M steps, before the start of each episode we sample a
Bernoulli random variable, if the result is 1, we execute
the behavior policy at the current episode to collect trajec-
tory, otherwise we execute the current policy at the current
episode. The switch between behavior policy and current
policy is necessary because without it, the Q function net-
work will only be exposed to actions with high rewards and
therefore will output high value for all actions since it can-
not distinguish between good actions and bad actions. In
this experiment, we use the exact same number of layers
and hidden sizes for all levels of policy and Q functions.
We observe that with the help of behavior policy, our pol-
icy converges quickly and outperforms its behavior policy
and the high level policy whose low-level policy is the same
as the behavior policy. This shows that the benefit of using
stacking multiple levels of LSP comes from a good behav-
ior policy not from the transformation of environment.

5. Conclusion

In this work, we investigate the source of benefit of stacking
multiple layers of latent space policies. We provide two in-
terpretations of stacking multi-level LSP. One is that a low-
level policy transforms the environment, such that the new
MDP is easier to solve for a high level policy. The other
is that low-level policy provides a good behavior policy to
high level policy. In our experiments we try to disentangle
the two factors, and perform attributions of performance
gains. We show that better convergence and performance
due to stacking higher level policies comes from good be-
havior policy and not from easier transition dynamics. In
support of this, we present a theoretical analysis of why,
under certain assumptions, it becomes easier to learn the
optimal policy when a pre-trained policy is used as a be-
havior policy. Additionally, we perform a qualitative anal-
ysis of the types of behaviors learnt by low-level policies.
We show that the low-level policy exhibits a surprising lack
of diversity, which could be potentially detrimental when
learning higher-level policies on top of it.

References
Bacon, P.-L., Harb, J., and Precup, D. The option-critic ar-

chitecture. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Daniel, C., Neumann, G., and Peters, J. Hierarchical rela-
tive entropy policy search. In Artificial Intelligence and
Statistics, pp. 273–281, 2012.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real nvp. arXiv preprint arXiv:1605.08803,
2016.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Di-
versity is all you need: Learning skills without a reward
function. arXiv preprint arXiv:1802.06070, 2018.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural
networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1704.03012, 2017.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1352–1361. JMLR.
org, 2017.

Haarnoja, T., Hartikainen, K., Abbeel, P., and Levine,
S. Latent space policies for hierarchical reinforcement
learning. arXiv preprint arXiv:1804.02808, 2018a.

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., and
Levine, S. Composable deep reinforcement learning for
robotic manipulation. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 6244–
6251. IEEE, 2018b.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. arXiv
preprint arXiv:1801.01290, 2018c.

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller,
M., and Silver, D. Learning and transfer of modulated
locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. science, 313
(5786):504–507, 2006.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Liu, Q. and Wang, D. Stein variational gradient descent:
A general purpose bayesian inference algorithm. In Ad-
vances In Neural Information Processing Systems, pp.
2378–2386, 2016.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial intelligence, 112(1-
2):181–211, 1999.

10-708 Final Report

Todorov, E. Linearly-solvable markov decision problems.
In Advances in neural information processing systems,
pp. 1369–1376, 2007.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. 2008.

