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Abstract
We present variations of the group latent auto regressive analysis (gLARA) method to model neural activity
collected from interacting brain areas and propose an estimate of Granger causality between the two neural
populations. Rather than identifying pairwise interactions between neurons within and across brain areas, we
aimed to study interactions at the population level by using gLARA, a method that could extract a smaller
number of temporally dynamic and interacting latent variables. We first implemented the factor analysis version
of gLARA, termed gLAFA, which limits correlations between neurons that cannot be described by the dynamical
latent time series, a common assumption in neural data analysis. Perhaps surprisingly, gLAFA presented an
improvement over gLARA when applied to real data which achieves a comparable log-likelihood upon real
data with faster convergence. We then extended gLAFA to capture Granger causal relationships between brain
regions by constraining the direction of influence between neural populations. Since the ground truth relationship
between real neural populations is unknown, we simulate situations where we know the underlying relationships
and find that we are able to recover these relationships with our constrained gLAFA models using a likelihood
ratio test of models with and without the influence of the other brain region. Finally, with the observation that
communication between neural populations may change over time, we derived a switching version of gLAFA,
which switches between model parameters depending upon the direction of information flow at each timepoint.
We show that we can correctly predict the underlying state based upon simulated data.

Introduction
A critical challenge in the field of neurophysiology is to
move beyond describing the activity patterns of individual
neurons in the brain towards examining how populations
of neurons collectively realize human behavior. In recent
years, advances in recording technology have enabled the
collection of neural data from multiple brain areas simul-
taneously and have lead to a shift towards the study of di-
rected information flow at the population level.
Traditionally neuroscientists have tried to model pairwise
interactions. With this approach, however, the number of
interactions grows exponentially with the number of neu-
rons. Moreover, recent work has highlighted that inter-
actions between neural populations is far lower dimen-
sional than the number of neurons within each population
(Semedo et al., 2019).
To leverage this, we modified the state-of-the-art method
for estimating the influence of latent variables within
and among neural-populations using group latent auto-
regressive dimensionality reduction. This is done by rep-
resenting the activity of each neural population in terms
of latent variables. We provide an comparison to demon-
strate that our model shows comparable performance on
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real neural data. Our model also provides increased inter-
pretablility, an aspect especially important in neuroscience,
because correlations between neurons can only be captured
by the dynamic latent time series. We validated our ap-
proach on both simulated and real neural data. We discuss
the relationship between our methods and Granger Causal-
ity and compare our results to a state-of-the-art attention-
based convolutional neural network. Finally, we combine
these extensions in to a switching model which allows us to
capture changing communications between neural popula-
tions over time. This is made possible through a switching
linear dynamical system with a new discrete state variable.

Background and Related Work
Latent Variable Models of Neural Activity
A standard method for analyzing neural population data
is to consider the high-dimensional population space, such
that each axis represents the firing rate of an individual neu-
ron. When viewed in this light, neural activity traces out a
trajectory that spans a low-dimensional subspace (Church-
land et al., 2012). The brain is not able to readily gen-
erate neural activity patterns outside this subspace, even
when learning new tasks (Sadtler et al., 2014). This find-
ing emphasizes the significance of viewing neural data in
this manner. Recently, neural population activity has been
found to be even more constrained (Golub et al., 2018;
Hennig et al., 2018), perhaps by both their internal dynam-
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ics and the influence of other neural areas (Russo et al.,
2018; Semedo et al., 2014).

Factor Analysis
Factor Analysis (FA) has been shown to be particularly
effective for describing the variability of neural activity
in terms of a lower dimensional set of latent variables
(Santhanam et al., 2009). The classical FA model assumes
latent variable z gives rise to data x according to the
following generative process:

z ∼ N (0, I)

x|z ∼ N (µ+ Λz, ψ)
(1)

µ ∈ Rq , z ∈ Rp, ψ ∈ Rq×q representing the diagonal noise
covariance, and Λ ∈ Rq×p represents the loading matrix.
q and p are the dimensionality of the neural data and latent
variables respectively, where p << q.

Granger Causality (GC)
PAIRWISE GC
Granger causality is an approach to detect temporally pre-
dictive relationships in time series data and is highly related
to mutual information under simplifying assumptions. It is
a widely used tool in neuroscience, despite the issues with
parameter estimation and interpretation as the number of
pairwise interactions grows exponentially with the number
of neurons under study (Seth et al., 2015). A neural signal
X1 is said to “Granger-cause” a signal X2 if past values of
X1 help to predict future values of X2. In pairwise GC,
one fits autoregressive processes to two models of order p:

X1(t) =

p∑
j=1

A11(j)X1(t− j) +

p∑
j=1

A12(j)X2(t− j) + ε1(t)

X2(t) =

p∑
j=1

A21(j)X1(t− j) +

p∑
j=1

A22(j)X2(t− j) + ε2(t)

If the inclusion of X1 reduces the prediction error ε2, then
we can conclude thatX1 is a Granger cause ofX2 (Cadotte
et al., 2008). This is statistically equivalent to assessing the
significance of the linear fit including X2 , ||A12|| > 0.
While Granger causality can be directly applied to pairwise
neural signals, consider the case where neuron X synapses
onto neuron Y and neuron Y synapses onto neuron Z.
Classic GC analysis would erroneously infer that neuron
X is causal to neuron Z, despite this influence occurring
only through mediator Y . Conditional GC was proposed
to eliminate the problem of erroneous GC estimates by in-
cluding the history of other time series in the autoregressive
model, such that that the GC influence of interest must pro-
vide predictive power above and beyond the conditioned
series (Cadotte et al., 2008). However, one can imagine the
difficulty in assessing the pairwise conditional influences
when both are embedded in a super high-dimensional net-
work with hidden variables. In real neural data, one might
need to condition on hundreds or even hundreds of thou-
sands of noisy neural signals to estimate the influence of

a single neuron on another, and even then, the interpre-
tation is still dependent on additional assumptions due to
the confounding variable problem. Under appropriate hy-
pothesis testing procedures each single pairwise interaction
is likely insignificant, yet considering the brain areas as a
whole may have revealed network-wide interactions.

GC FOR GENERAL PROBABILISTIC MODELS

The formulation of linear GC defined above requires two
key assumptions: linearity and Gaussian random variables.
(Kim & Brown, 2010) proposed a general statistical frame-
work for assessing GC interactions, where by the GC esti-
mate from a time series X1 to a time series X2 is estimated
by the relative reduction of the likelihood of X2 obtained
by the exclusion ofX1 compared to the likelihood obtained
using the joint time series. Let us define xi and xj , where
the past values of xi including the contribution of xj is x,
and the past values obtained after excluding xj is x−j. For
simplicity xi and xj can be considered two univariate time
series, but such an estimate can be interpreted as sets of
time series as well. Thus, the following is true only if and
only if xi and xj are independent:

p(xi|x(t)) = p(xi|x−j(t)) (2)

We can therefore assess Granger Causality from xj to xi
using the log-likelihood ratio (Kim & Brown, 2010), with
likelihood Li(θ

−j
i ) calculated using x−j(t)).

Γij = log
Li(θ

−j
i )

Li(θi)
(3)

If xj is Granger Causal to xi then Li(θi) < Li(θ
−j
i ), (i.e.

Γij < 0) (Kim & Brown, 2010). The test statistic is thus
S = −2Γij ,S ∼ χ2

M where the degree of freedomM is the
difference in dimensionality of two models. The instanta-
neous causality of xi and xj :

Γi·j = log
Li(θi)Lj(θj)

Lij(θij)
(4)

where Lij(θij) is the joint likelihood function of xi and xj .
If Γi·j 6= 0, then xi and xj instantaneously cause one an-
other.
This framework extends the pairwise definition of the study
of interactions to general probabilistic models. With this
new metric, one can consider estimating the information
flow between two neural populations as one-directional
temporal prediction, for example by comparing with the
data likelihood of a latent variable model of population 1
with information about population 2 to the likelihood of
population 1 without information about population 2.

Auto-regressive latent variable models
Recent work has shown single neuron estimates of interac-
tion may be insignificant, but at a population level one may
discern a notable relationship (Semedo et al., 2019). Thus
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we were interested in combining the idea of network-level
Granger causality with a dimensionality reduction tech-
nique appropriate for interacting neural populations, and in
doing so more effectively estimate the directional influence
of one neural population on another.
Two widely known autoregressive models, AR-principal
component analysis (AR-PCA) and AR- probabilistic
canonical correlation analysis (AR-pCCA), both feature an
autoregressive process over latent variables. However, nei-
ther method distinguishes between groups of neural pop-
ulations in the low-dimensional latent space, applying a
common latent variable to all recorded neurons. If we were
to directly apply these more standard dimensionality reduc-
tion technique to our data, which do not incorporate class
or population labels, the estimated latent variables would
capture modes of covariability across the neurons without
distinguishing between-population interaction and across-
population interaction. Applying factor analysis and its dy-
namic variants to each population individually is also not
appropriate, since the across-population interaction would
not necessarily be preserved.

Group latent auto-regressive analysis (gLARA)
Since previously published autoregressive methods such
as AR-pCCA and AR-pPCA do not distinguish between
groups of neural populations in the low-dimensional space,
applying a common latent variable to all recorded neurons,
(Semedo et al., 2014) developed an autoregressive model of
neural activity (gLARA) such that each neural population
is represented by a separate set of latent variables, but these
latent variables are permitted to interact linearly under an
autoregressive model.
In this model, the latent variables for each neural popu-
lation interact over time. This represents the state-of-the-
art autoregressive latent variable model of neural activity
across multiple brain regions. Here we consider 2 neural
populations, conceptualized as being recorded from differ-
ent brain areas xi, jointly driven by pi-dimensional latent
states zt, where xi has qi neurons (i.e. xi ∈ Rqi ). The
equations for gLARA follow for the M = 2 case using the
notation in the Box :

zt ∼ N (0, I) if 1 ≤ t ≤ τ (5)

zt|zt−1, . . . zt−τ ∼ N

(
2∑

m=1

τ∑
s=1

Ami,jzt−s, Q
m

)
(6)

[
x1

x2

]
∼ N

([
C1 0
0 C2

] [
z1
t

z2
t

]
+

[
d1

d2

]
,

[
R1 0
0 R2

])
(7)

The covariance of the observed signal xi is thus:

cov

([
x1

x2

])
=

[
C1

C2

] [
C1

C2

]T
+

[
R1 0
0 R2

]
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Figure 1. Setup schematic for gLAFA and gLARA on two
brain areas. All arrows represent causal connections. All of the
causal connections (arrows) indicate active and directed commu-
nication. Over time the two latent states communicate with each
other and each latent communicates to the neurons in the same
brain area xit (see Table 1 for parameters).

The observation model incorporates a block diagonal struc-
ture that allows shared variance among neurons within
a single population, but not across populations. In our
work we implement and extend gLARA to assess Granger
causal-like interactions.

Methods
Box 1: Notation
T : timepoints per trial
qi: number of neurons in region i
pi: latent state dimension in region i
xit ∈ Rqi×T : observations for region i at time t
zit ∈ Rpi×T : latent for region i at time t.
τ : order of autoregressive model
Ci: coefficient of latent in region i
St: hidden discrete state variable for time t.

gLAFA
We present a group latent autoregressive factor analy-
sis (gLAFA), a more constrained version of the gLARA
model. The aim of this algorithm is to extract directional
influences from one population’s latent variables on an-
other. We derived and implemented the expectation maxi-
mization algorithm for the gLAFA model and implemented
gLARA model from scratch (without using any existing
code) in order to compare the methods. With the appro-
priate augmented models as mentioned in (Semedo et al.,
2014), one can use a standard E-M to fit the model to data.
We propose additional extensions in the sections below.
The intuition behind developing this model was that latent
variable models of neural activity have the underlying as-
sumption that covariance shared between neurons is sig-
nal we would like to preserve, whereas any variation that
is independent for each neuron is treated as noise. Thus
the full within-population R noise covariance presented in
gLARA loses the central benefit of FA, which we have pre-
viously shown to be widely effective for capturing the low-
dimensional structure of neural population activity (Sadtler
et al., 2014).
We derived the M-step of gLAFA to constrain the observa-
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tion covariance matrix:

Ri =
1

T

T∑
t=1

{((xit − di)(xi
′

t − di)) ◦ I

−(CiE(zit)(x
i
t − di)′) ◦ I

−((xit − di)E(zi
′

t )Ci
′
) ◦ I

+(CiE(zitz
i′

t )Ci
′
) ◦ I}

(8)

Probabilistic Granger Causality for gLAFA
As described above, gLARA and gLAFA both allow in-
stantaneous interactions between the two sets of latent vari-
ables. The model fit returned from the E-M algorithm
alone cannot determine if the influence of the other pop-
ulation offers profound improvement over the first popula-
tion’s history– especially if activity in the two networks is
correlated. Furthermore, for high-dimensional neural data
sets, we desire a valid statistical hypothesis testing frame-
work in order to make scientific statements about the inter-
actions between neural networks. Under the probabilistic
GC metrics defined above 3, we then considered how to
estimate the data likelihood of each population under the
gLAFA model with and without information from the other
population’s latent variables.
Thus we considered additional constraints over the au-
toregressive variables (matrix A, above) to satisfy gLAFA
models with either one-directional flow, bidirectional flow,
or independence. For example, under the one-directional
Area 1→ Area 2 gLAFA model, theAmatrix must be pro-
jected to minimize ||A12||1. The data likelihoods for the
observations from each population were also separated.
Referring to 3, the Granger causal estimate from population
X2 to X1 (Γ12), one first computes two data likelihoods:
(a) the log likelihood of X1 under the model in which di-
rectional influences from 2− > 1 is unconstrained but X1

cannot influenceX2, and (b) the log likelihood ofX1 under
the model in which the two populations are not interacting.
The GC12 estimate is simply the second quantity minus
the first. Following (Kim et al., 2011), this estimate is then
multiplied by −2 to find a χ2r distributed statistic that can
be used for hypothesis testing.

Temporal Causal Discovery Framework (TCDF)
The assumed generative model for our data has latent states
that dynamically change across time and influence the la-
tent states of other neural populations. We wanted to com-
pare causal relationships detected by gLAFA to some other
benchmark. We therefore used TCDF, a neural network
which has shown state-of-the-art performance on the task
of learning causal structure from time series data despite
confounders (Nauta et al., 2019).
TCDF can detect causal relationships between input time
series, including hidden confounders. It does this by learn-
ing the dependence of each input time series upon the oth-
ers with a distinct convolutional neural network with an
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Figure 2. Setup schematic for switching gLARA. Adding to the
system described by Figure 1, we additionally have hidden state
variables St which determine which set of parameters to use at
a specific time. each latent to the corresponding observations xit
(see Table 1 for parameters).

attention mechanism. From this, many potential causal
graphs are produced. To distinguish between the graphs,
causal validation is performed by checking that causes have
temporal precedence as well as that manipulation of puta-
tive causal variables will indeed cause the predicted effects.
TCDF also outputs the number of timesteps between cause
and effect.

Switching gLAFA
In the gLARA/gLAFA models, the parameters θ =
{A,R,Q, d, C} are static across time. However in neural
populations, the strength and direction of communication
between brain areas may change over time. For example,
brain region 1 may be sending input to brain region 2 at
time point 1, but subsequently brain region 2 may send in-
put to brain region 1 at time point 2. From our work on
constraining information flow in the previous section on
Granger Causality, one might imagine a mixture of 4 mod-
els which model the different combinations of relationships
between neural populations (e.g. both populations influ-
ence each other, population 1 influences population 2 etc.).
This is the intuition behind why we were interested in ex-
tending gLAFA to model changing communications.
One approach for this as outlined in (Murphy, 1998) is to
use a mixture of linear dynamical systems. To do so we
introduce a new hidden discrete variable St which deter-
mines the set of parameters to be used at each time point.
St is governed by Markovian dynamics

St = f(St−1) (9)

The graphical model for the switching gLAFA is illustrated
in Figure 2. As shown the switching variable functions to
select the subprocess that is passed to the output variable.
Equations 2, 3, and 4 remain as the generative model of
switching gLAFA, except that the choice of model param-
eters are now governed by the discrete state variable.

SWITCHING GLAFA DERIVATIONS

We follow the model presented by (Murphy, 1998) with
markovian dynamics for the state matrix. Following from
the setup introduced by equations (6) to (7) we introduce
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the state variable St. Since we want to know the maxi-
mum likelihood estimate and the St are not observed, the
EM algorithm is used to determine the parameters θt :=
{At, Rt, Qt, dt, Ct}.
This represents a modified system than from the gLAFA
case. By augmenting our generative model in the same
manner as that found in (Semedo et al., 2014), we can
then use the switching Kalman smoother equations found
in (Murphy, 1998) for the expectation step. Thus the
joint log probability would be for augmented parameters
θ = {Ā, R̄, Q̄, d̄, C̄}:

logP (z̄1:T , x̄1:T ,s1:T ) = −1

2

T∑
t=1

[x̄t − C̄z̄t]T R̄−1[x̄t − C̄zt])

− T

2
log|R̄|

− 1

2

T∑
t=2

[z̄t − Āz̄t−1]T Q̄−1[z̄t − Āz̄t−1]

− 1

2

T∑
t=1

x̄Tt Ix̄t

− T (p+ q)

2
log(2π) + log(π1)

+

T∑
t=2

logZ(st−1, st)

For the M step, we take the derivative of the joint log-
likelihood with respect to each individual parameter and
set it to 0 to obtain the maximum likelihood estimate of the
model parameters, where the quantity we maximize is

L̃ = ElogP (z̄1:T ,x̄1:T ,s̄1:T )(L)

Where we have computed E[xjt ], E[zjtz
j
t
′], E[z̄tz̄

′
t−1] and

W j
t = Pr(St = j|x1:T ) in the expectation step.

M STEP

[
A11

1 . . . A11
K A12

1 . . . A12
K

A21
1 . . . A21

K A22
1 . . . A22

K

]
= Ai

Ai = (
T∑

t=2

W i
tE[z̄tz̄

′
t])(

T∑
t=2

W i
tE[z̄tz̄

T
t ])−1

[
Cj

1 dj
i

]
=

( T∑
t=1

W i
t xj

t

[[
E[zj

t

T
1
]])

·
( T∑

t=1

W i
t

[
E[zj
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j
t

′
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t]

E[zj
t] 1

])−1

Figure 3. gLAFA performs slightly better then state-of-the-art
method gLARA on real neural data. gLAFA takes fewer itera-
tions to converge, and (not shown) converges to the same param-
eters as gLAFA.

Rj
i =

1∑T
t=1W

i
t

T∑
t=1

(
W i

t

(
(xj

t − dj
i)(x

j
t − dj

i)
′

−Cj
iE[zj

t](x
j
t − dj

i)
′ − (xj

t − dj
i)E[zj

t

′
]Cj

i

′

+ Cj
iE[zj

tz
j
t]C

j
i

′))

Qi =
1∑T

t=2W
i
t

T∑
t=1

W i
tE[z̄tz̄t

′]−Ai

T∑
i=2

W i
tE[z̄tz̄

′
t−1]

Zi,j =

∑T
t=2 P (St−1 = i, St = j|x1:T )∑T

t=1W
i
t

πi =W i
1

Experiments
gLAFA method verification
Using the generative framework in Equation 7 to simulate
data with known “ground truth” latent variables and param-
eters, we performed a series of sanity checks to confirm that
our implementation of the EM algorithm for parameter es-
timation was returning expected results. This is possible
because gLARA/gLAFA are generative models.

DESCRIPTION OF TESTBED

We pick our parameter values from uniform random dis-
tributions, while also ensuring that the eigenvalues of the
A matrices are less than 1 for stability. Here we set p1 =
1, p2 = 1, q1 = 2, q2 = 2.

DESCRIPTION OF EXPERIMENT

Figure 10 illustrates the log-likelihood is non-decreasing,
which confirms that the E-M algorithm is converging to
a local optimum. The estimated estimated latent variable
and model parameters also grow closer to the ground truth
across iterations; this is shown in Figure 10.
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Figure 4. Convergence over EM iterations for gLAFA and
gLARA. Here the convergence and log likelihood are plotted
which correspond to results in figure 5 for gLARA (top) and
gLAFA (bottom). Convergence is measured as the difference of
log likelihood from zero.

Comparison of gLAFA and gLARA on real data
To answer whether our method gLAFA could be used to
model real data with as much efficacy as gLARA, which
is the state of the art existing approach, we compared the
performance of the two methods on the real data provided
by (Semedo et al., 2014).

DESCRIPTION OF TESTBED

The data for comparison contained recordings from the V1
population of an anaesthetised monkey. In this data there
are 200 bins of 5ms each (1s of data total) for each of the
V1 and V2 brain regions. We have q = 111 and q = 37
neurons for the two regions, respectively. In addition to
concur with (Semedo et al., 2014) we chose p = 10 for
both V1 and V2.

DESCRIPTION OF EXPERIMENT

To compare gLARA and gLAFA, we divided the data such
that three quarters was used to learn the model parameters,
then performed leave one out (LOO) neuron prediction on
the remaining quarter of neurons following (Semedo et al.,
2014). The LOO procedure entails estimating the latent
states E(z|y) in the absence of one neuron, followed by
prediction of its activity using the learned parameters and
estimated latent state.
As shown in figure 5, the performance of gLAFA is com-

parable to gLARA, and produces a smoother estimate of
the mean firing rate, reaching a similar log-likelihood to
gLARA and converging faster. The faster convergence
makes sense intuitively, since the constraint on the noise
covariance reduces the number of parameters to be fit for
gLAFA. Despite having less parameters, it was surprising
that the log-likelihoods of both models converged to similar
values. This could suggest that the additional parameters in
gLARA do not contribute much to the data fit. Addition-
ally with this new constraint, we have preserved the shared
variance between neurons, treated as firing rate variability,
and discarded independent variance, which is thought of
spiking variability (Cunningham & Yu, 2014). This lends
to the interpretability of the model.
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Figure 5. Leave one out neuron prediction using gLAFA and
gLARA. Observed activity (black) and the leave one out neuron
prediction of gLARA (blue) and gLAFA (red) for a representative
held out trial averaged over the V1 (top) and V2 (bottom) popula-
tion.

Performance of Granger Causal test on data generated
from gLAFA with simulated causal relationships
To further our goal of revealing causal relationships in real
neural data, we first simulated different Granger causal-
type scenarios to test whether they could be captured by
gLAFA.

DESCRIPTION OF TESTBED

We generated a toy dataset under the model defined by
equation 7 but with different constraints on A. We de-
fine the predictive relationships between the simulated neu-
ral populations a priori, but the algorithm does not have
access to the ground truth. Here we simulate 4 neurons
(q1 = 4, q2 = 4) in each population, with 2 underlying la-
tent variables each (p1 = 2, p2 = 2). We pick Q,R, d, C
from standard normal distributions. For the A matrix, we
constructed three different scenarios. First, where the latent
variables of population 1 and population 2 do not interact
with each other, only themselves, which corresponds to an
A matrix with the off diagonal quadrants set to 0 (’Area 1
��HH↔ Area 2 scenario). In the second case, both populations
cause one another, which corresponds to a full A matrix
(Area 1↔ Area 2 scenario). The third case, where popu-
lation 1 causes population 2, corresponds to the lower left
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quadrant of the A matrix set to 0.

DESCRIPTION OF EXPERIMENT

Constructing such A matrices helps us to validate the po-
tential of applying Granger causality to a constrained ver-
sion of gLAFA in scenarios where we know the ground
truth. This is illustrated in the graphical models shown in
figure 6.
After generating the data, we ran modified versions of
gLAFA under the above constraints to detect the differ-
ent types of relationships between populations and then
computed the Granger causality statistic described in the
methods section in order to estimate the Granger causal
predictability of the two time series simulated in the sys-
tem. To estimate the directional influences within a single
dataset, the 4 modifications of the gLAFA and gLARA EM
algorithms described abovewere implemented and applied
to the toy dataset.
The 5-fold cross-validated Granger causality estimates for
each direction of information flow are shown in the table
6. Γ12 is the estimate for the directed influence of Area
2 on Area 1 and should be a large negative number if this
influence is significant. Any positive GC estimate is by
definition non-significant. This estimate is then evaluated
under a 2

p2 distribution, and significant results are indicated
in red. We then binarized the results in the form of 2×2 ta-
bles (see Figure 6), in which indicate that our measure was
capable of recovering this predictive relationship between
the populations. The framework was thus able to reliably
return the ground truth simulated influences under the set-
ting of a moderate signal to noise ratio and fully observed
network, which is expected since the data was generated
under a fairly strong auto-regressive assumption over the
latent variables. One concern now is that the framework
described here does not allow for comparison of the mag-
nitude of directional influence, only whether or not such an
influence is significant. In such cases where the ratio of di-
rectional influence may be changing in a context dependent
manner, we cannot currently compare such differences.

Performance of TCDF on data generated from gLAFA
with simulated causal relationships
We aimed to benchmark the performance of the granger
causality statistic described in the ’Granger causality on
gLAFA’ section against the TCDF neural network.

DESCRIPTION OF TESTBED

For a fair comparison of the two methods, we evaluated the
performance of TCDF using the same toy dataset that was
used to test the ’granger causality on gLAFA’.

DESCRIPTION OF EXPERIMENT

We summarized the results in Table 1. We observed that
TCDF always recovered relationships between the correct
populations. For 4 of 5 datasets we profiled, when us-
ing 1 hidden layer, TCDF was able to categorize each of

Figure 6. Visualization of causal relationships within the sim-
ulated neural populations 1 and 2 (left), and results from the
probabilistic Granger Causality statistic run on gLAFA re-
sults (right). On the left outer circles represent distinct popu-
lations while the inner circles represent neurons, which are con-
nected to show temporally causal communication. The figure il-
lustrates cases A. where there is no causal relationship between
populations 1 and 2. B. both populations cause each other C. one
population causes the other. The A labels on the edges are repre-
sentative of the A matrices described in the gLAFA model.

one component of the latent variables r1 and r2 as a cause.
However there are mistakes as TCDF sometimes identifies
neurons within the same region instead of the latent vari-
able as causal. We speculate that since the strength of the
signal is evolving over time, the root cause can be easy to
misidentify. Another shortcoming is that the delay discov-
ered for the causal relationships is not constant even though
the data was consistently simulated with τ = 1.
Thus, compared to the results of the Granger Causality
statistic, TCDF does not perform as well at capturing causal
relationships.
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Dataset Regions
intra-connected?

Regions
interconnected? Discovered delay

Area 1→ Area 2 Y
Y:
z1 2 causes x2 2

0 for all, except:
z1 2 to x2 2, z2 1 to x2 2, x1 3 to x1 1

Area 2← Area 1 Y
Y:
z2 1 causes x1 1

0 for all, except:
z2 1 to x1 1

Area 1↔ Area 2 Y N
0 for all except:
z2 2 to x2 4 and x2 1, x1 3 to x2 4

Area 1��HH↔ Area 2 Y N 0 for all

Table 1. Learned causal connections from TCDF on simulated data. For each dataset that was generated from the directional gLARA,
we ran TCDF and discovered intra region causal connections for each cell population. TCDF also successfully recovered one inter region
causal connection of the correct direction for the Area 2→ 1 and Area 1→ Area 2 datasets. Importantly, and perhaps surprisingly, it
does not seem to distinguish the Area 1↔ Area 2 versus the Area 1��ZZ↔ Area 2 case.

Results from switching gLAFA

Figure 7. Probabilities of the states extracted from switching
gLARA. Top: Observed data, middle: estimated probability of
system being in state 2 from the switching Kalman smoother, bot-
tom: predicted state of the system as compared to the ground truth
states

Having derived the necessary equations for the switching
gLAFA, we show a preliminary implementation of the al-
gorithm given the parameters (i.e. without the need to do
maximum likelihood over the log-likelihood) in figure 7.

DESCRIPTION OF TESTBED

We simulated data from the generative model of the switch-
ing linear dynamical system, with q = 2 and p = 1.
We again drew the parameters from a random distribution
while ensuring that the system is stable (i.e. the A matrix
has eigenvalues < 1). We simulated 1 trial and 100 time

points.

DESCRIPTION OF EXPERIMENT

Here we are able to estimate the state of the system, and
predict the corresponding latent variables. To obtain an es-
timate of the ground truth latent variable, we then collapse
the latent variables per state as a weighted sum of the indi-
vidual latent variables, as can be seen in figure 8.

Figure 8. Estimates of the hidden latent variables for switch-
ing gLAFA. Estimates for each of the hidden latent variables
are shown (top and middle), with which a weighted sum (bottom)
would provide an estimate of the generated latent variable.

Conclusion
Discussion
Here we presented gLAFA, an autoregressive model of
neural signal across multiple populations. We also provide
extensions on gLAFA to find causal connections and to al-
low state switching.
We compared the performance of gLAFA to the the state
of the art model, gLARA on real neural recordings from
the brain regions V1 and V2. We found gLAFA converges
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faster and by visual inspection offers comparable recon-
struction of the signal. This makes sense as gLAFA treats
region independent variance as noise, offering more inter-
pretability. Furthermore since this results in fewer parame-
ters, gLAFA is more robust to overfitting.
Additionally, we developed a likelihood ratio test to de-
termine Granger causality between different brain regions.
We found that this Granger causal statistic performs bet-
ter at identifying causal relationships than a state of the art
neural network developed for the same task (TCDF).

Future Work
We have developed a method to model neuron signals
across brain regions, gLAFA, and shown that it has good
performance on both simulated and on real neural record-
ing data.
While these initial results were promising, we also propose
some future directions that will be useful to determine the
full utility of the model and its extensions:

• We have shown gLAFA is able to reconstruct the av-
eraged signal across neurons for two brain regions. It
is natural to extend the model to more regions in order
to better simulate the complexity in the brain.

• Although we have developed the granger causal met-
ric and shown that it works well on gLAFA- generated
data, we also need to look whether it will also be ap-
plicable on a real dataset.

• Full implementation of the switching gLARA model:
this would enable us to fully estimate model states
from the current gLAFA simulation data, but also
upon data simulated upon the switching model and
upon real data. The switching model also has the
potential to help us evaluate the relative strength of
causal connections between different brain regions.
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