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Abstract
Humans are capable of walking in a complex nat-
ural environment while cooperating with other
stable or moving objects around. Being able
to identify ones optimal moving path is a chal-
lenging task not only for humans but also for
computers. Predicting the motion of pedestri-
ans within a large system is an important prob-
lem with applications in autonomous driving and
human-robot interaction. An accurate prediction
can yield an optimal planning for the agent be-
ing controlled by the computer. The key to this
problem is to model the complex interaction be-
tween people as well as other seen objects in the
crowd. While traditional methods have utilized
sequential analysis for complex time series data,
some of them fail to utilize the interaction among
pedestrians. In this project, we investigate the ef-
ficacy of graph neural networks, a new class of
methods for interaction modeling, on the prob-
lem of pedestrian trajectory prediction.

1. Introduction
One of the goals of human-robot interaction is to enable
trust between humans and robots. A key area in this domain
is social navigation when a robot is maneuvering among
pedestrians. Traditionally, mobile robots are unable to an-
alyze the complex interactions among pedestrians, which
often leads to the freezing robot problem (Trautman &
Krause, 2010). Therefore, we attempt to analyze human
navigation trajectories via prediction and empower a robot
with similar behavioral capabilities in order to counter the
freezing robot problem. This would not only open doors
for better human-robot interaction, but also provides po-
tentially better trafic planning tools for real-world traffic.

Humans have the innate ability to read and understand
each other. When we walk in the public with other people
around, we can easily prevent ourselves from hitting each
other as if we can read others’ minds such that we know
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where they are going. However, in fact, this “mind read-
ing” is based on our understanding of a set of social rules as
well as social relationships. For instance, one would give
priority to senior citizens and/or people who need special
care. Meanwhile, one may also try to stick together with
one’s friends. These different and complex common sense
rules and social conventions jointly form the public crowd
trajectory system.

However, predicting the motion of human while taking into
account common sense behavior is a challenging problem.
It requires the system being able to interpret surrounding
environment as well as subtle connections among pedestri-
ans. For instance, people will try to avoid hitting each other
in the crowd from all directions or they will try to avoid
huge amount of traffic at all cost. More subtle connec-
tions also involve relationships among pedestrians: people
known each other will tend to walk closely together while
two guys who don’t know each other may try to keep a min-
imal safe distance. These all hidden rules guide how we as
humans walk around in the larger system.

Previous methods (Alahi et al., 2016; Helbing & Molnár,
1995) have utilized different sequential data analysis to
model the complex system being involved. While more
old-school methods have tried to formulate the ”social
force” models mathematically (Helbing & Molnár, 1995),
more recent approachs (Hochreiter & Schmidhuber, 1997)
try to utilize sequential neural networks such as recurrent
neural network (RNN) (Rumelhart et al., 1988) to handle
this challenge. However, while prior work has focused
on connecting each pedestrian with his/her nearby people
(Alahi et al., 2016), we believe that the underlying inter-
human relation graph, despite sparse, should not be re-
stricted to neighbours only. In our project, we propose to
use graph neural network (Kipf et al., 2018) to formulate
connections among pedestrians and conduct trajectory pre-
diction.

The rest of the paper will be organized as follows. We first
give a thorough review of related work in the next section.
In section 3, we details the proposed method together with
its connection to the graph inference problem, followed by
description of used dataset as well as experimental obser-
vations in section 4. Finally, we state our key observations
in the conclusion as the last section.
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Figure 1. Predicting the the trajectories of pedestrians is challeng-
ing due to complex interactions among the crowd.

2. Related works
2.1. Time Series Analysis / Sequential Data

The time series analysis covers all sequential data with
time being one of the dimensions. As time is sequen-
tial and mono-directional, these data often have depen-
dencies on data of previous time steps. Some more tra-
ditional statistical approaches of such data includes the
well known Autoregressivemoving-average model (Box &
Pierce, 1970) which uses the data of prior time steps to pre-
dict for the future. The key is to construct a better weight-
ing function for data from different time steps. Some other
variants include exponential smoothing (Gardner Jr, 1985),
Brown exponential smoothing, random process such as
poisson-point process, and Autoregressivemoving-average
model with exogenous inputs model (ARMAX) (Pham
et al., 2010). These more traditional methods are still robust
for many sequential data prediction tasks such as demand-
ing forecasting.

More recent line of work of time series analysis tries to
utilize the latest development of graph theory and neural
networks to make robust prediction. These includes Hidden
Markov Model (Fine et al., 1998), Kalman Filter (Welch
et al., 1995), and Recurrent Neural Networks. These later
development has been shown advantage of better capturing
correlations among dimensions of data and outputs more
efficient and meaningful graph inference.

2.2. Pedestrian Trajectory Prediction

Research in pedestrian behavior analysis can be dated back
to two decades ago when (Helbing & Molnár, 1995) pro-
posed the social force model. Social force models draw
inspiration from physics principles and use the concept of

attractive and repulsive forces to analyze the movement of
pedestrians. Despite achieving early success, such simple
models fail to account for the complex interpersonal inter-
actions among pedestrians and result in inaccurate trajec-
tory predictions.

Recent years, pedestrian trajectory problem has gained at-
tention due to deep learning, with one of the most influ-
ential work being the Social-LSTM model (S-LSTM) pro-
posed by (Alahi et al., 2016). S-LSTM initiated the trend
of using Long Short Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997), a type of Recurrent Neural Networks
(RNN) (Rumelhart et al., 1988), to model the trajectory of
every single pedestrian. To account for inter-pedestrian in-
teractions, S-LSTM utilizes social pooling to combine the
trajectory information of one pedestrian with those of the
neighboring pedestrians. With careful training, S-LSTM is
able to obtain significantly better prediction results when
compared with the social force model. However, the social
pooling neighbor only considers interactions with a few
neighboring pedestrians and is computationally expensive.

To improve this, models developed by (Vemula et al.,
2018) and (Varshneya & Srinivasaraghavan, 2017) pro-
posed conditioning every single pedestrian’s trajectories on
all present pedestrian behavior, while using attention mech-
anism to decide which pedestrians to focus on. Attentions
are weights assigned to the hidden layers of pedestrians’
LSTM models. Other models such as SS-LSTM by (Xue
et al., 2018) proposed to expand the input domain by fur-
ther considering image patches around pedestrians. These
images patches are encoded using Convolutional Neural
Networks (CNN) (Krizhevsky et al., 2012) and the ex-
tracted features are further processed by LSTM networks.
More recently, with the advent of Ganerative Adversarial
Networks (GAN), (Gupta et al., 2018) proposed the Social-
GAN model, which contains a LSTM-style encoder de-
coder network for the generator and another LSTM-style
encoder network for the discriminator. Last but not least,
the state-of-the-art SoPhie model developed by (Sadeghian
et al., 2018) combined all three improvement proposals
mentioned above. Despite great success, these models are
all based on LSTM and can only operate on regular graph
models such as images or location sequences. We believe
our approach, as described below, can enable us to further
explore inter-pedestrian relationships and yield more accu-
rate trajectory predictions.

2.3. Relational Reasoning

Relational reasoning is the cornerstone of symbolic ap-
proaches to AI (Newell, 1980), where inference and pre-
dictions are made by reasoning about relations defined over
a set of symbols using tools from logic and mathemat-
ics. It is known that symbolic AI suffers from the symbol
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Figure 2. Architecture of Relational RNN.

grounding problem (Harnad, 1990) and thus is gradually
replaced by statistical learning approaches (LeCun et al.,
2015). However, it is difficult to learn complex relations
from data without proper priors (Garnelo et al., 2016; Lake
et al., 2017). Therefore, some recent works (Santoro et al.,
2017; Kipf et al., 2018) start to explore the combination of
relational reasoning with neural networks.

Graph Neural Networks (GNN) (Scarselli et al., 2009;
Bruna et al., 2013; Li et al., 2015; Defferrard et al., 2016)
is the main tool for relational reasoning using neural net-
works. GNN is a class of neural networks that operates on
graph-structured data. Unlike Convolutional Neural Net-
works (CNN) (LeCun et al., 1995) and Recurrent Neural
Networks (RNN) (Rumelhart et al., 1988) which typically
operate on regular graphs such as images (2D grids) and
sequences (1D grids), GNN is able to operate on graphs
with more complex geometry and topology, such as 3D
meshes, social networks and physical systems. The ex-
pressive power of GNNs has been demonstrated in various
tasks such as classification of graph nodes (Kipf & Welling,
2016), semantic segmentation of 3D shapes (Yi et al., 2017)
and modeling of interacting systems (Kipf et al., 2018).

Interaction Networks (IN) (Battaglia et al., 2016) is a par-
ticular type of GNN which models an interaction systems
as a directed, complete graph, where each vertex encodes

the state of an object and each edge encodes the relation
between a pair of objects. Relational Networks (RN) (San-
toro et al., 2017) generalizes IN to operator on feature maps
of CNN and LSTM so that they can be trained jointly to
perform tasks like visual question answering. Neural Rela-
tion Inference (NRI) (Kipf et al., 2018) further extends this
framework by considering different types of interactions,
which can be treated as an edge classification problem.

3. Method
3.1. Problem Formulation

We formulate pedestrian trajectory prediction as a sequence
prediction problem. Specifically, given a set of pedestrian
trajectories x = (x1, . . . ,xT ), where xt = (xt

1, . . . , x
t
N )

denotes the locations of N pedestrians at time t, we would
like to infer their positions for the next K time frame
(xT+1, . . . ,xT+K).

The movement of a person depends on its own past tra-
jectory as well as the trajectories of other people in the
crowd. In order to model these relationships, we propose
a neural network model which combines Recurrent Neural
Networks (Chung et al., 2014) and Graph Neural Networks
(Santoro et al., 2017), named Relational RNN (RRNN).
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3.2. Relational RNN

As illustrated in Figure 2, the Relational RNN consists
of two stacked Recurrent Neural Networks: Edge RNN,
which is responsible for modeling the influence of other
people in the crowd on the trajectory of a certain person,
and Node RNN, which accounts for the dependency of the
person’s own past trajectory on its future movements.

At each time step t, the locations of the N pedestrians
present in the current frame, xt = {xt

i}Ni=1, is first passed
into Edge RNN. Edge RNN processes the pedestrian loca-
tions via a relation block, which we will introduce in Sec.
3.3, and passes the processed features through a Gated Re-
current Unit (GRU) to obtain a hidden state h

(1)
t . The hid-

den state is processed through another relation block and
passed to Node RNN. Node RNN also takes the pedes-
trian locations xt as input, but passes them independently
through a Multi-layer perceptron (MLP) and concatenated
the resulting features with the hidden state from Edge
RNN. The concatenated features are passed through an-
other GRU which gives a hidden state h

(2)
t . If a predic-

tion were to be made for the current time step, then a linear
output layer is applied to h

(2)
t .

With this stacked RNN architecture, we can effectively
blend temporal and relational information. The informa-
tion contained in the pedestrian’s own trajectory, which
is the major source of information for predicting its fu-
ture movements, is modeled through Node RNN. However,
the key difference between our model and an RNN that
process each trajectory independently is the context infor-
mation provided by Edge RNN. With the relation block,
Edge RNN is able to summarize the interaction between
each pair of pedestrians. This information can be help-
ful in cases where there are significant interaction between
agents, e.g. two pedestrians running into each other will
try to avoid collision. In cases where there is little or no
interaction, the GRU in Node RNN can choose to ignore
the context information from Edge RNN and focus on the
information from each pedestrian’s own past trajectory.

3.3. Relation Block

The relation block in Edge RNN is the key to modeling
interactions among pedestrians. It is an instance of graph
neural networks. To be specific, the input to the relation
block is a set of “node embeddings”, i.e. feature vectors
which we associate to vertices in a graph. We represent
interactions among people with “edge embeddings”, i.e.
features associated to edges in the graph. The two sets
of embeddings communicate via the message passing op-
erations introduced below, allowing the network block to
model complex interactions among people in a crowd.

Figure 3 illustrates the structure inside the relation block.

Figure 3. Illustration of the relation block, consisting of local
message passing operations v → e and e → v.

The key components of the relation block are two local
message passing operations, defined as follows:

v → e : ul
i,j = f l

e([u
l
i,u

l
j ]) (1)

e→ v : ul+1
j = f l

v

(∑
i∈Nj

ul
i,j

)
(2)

Here, ul
i and ul

i,j are the learned features of node vi and
edge ei,j at layer l. Nj denotes the set of nodes adjacent
to j and [·, ·] denotes concatenation. fe and fv are neu-
ral networks defined on the edges and nodes respectively.
These message passing operations convert between ver-
tex and edge embeddings, which allow information to be
distributed and aggregated along graph edges. With non-
linearities in fe and fv , the network can learn highly com-
plex functions on the graph nodes and edges.

The message passing operations can be implemented as
matrix multiplications, which makes it easy to integrate the
operations into any neural network framework. In our ex-
periments, we use fully-connected graphs as the number of
pedestrians present in each frame is relatively small (on the
order of 1 to 50). In the cases where the number of vertices
become large, the relation block can also take a pre-defined
graph or a nearest neighbour graph to keep the computation
tractable. Empirically, we observed that 1 round of mes-
sage passing (l = 1) is enough to model the interactions
present in our datasets.

4. Experiments
4.1. Datasets

We conduct our study principally on two datasets, namely
the ETH (Pellegrini et al., 2009) and UCY (Lerner et al.,
2007) datasets. Both contains videos recording overhead
view of walking pedestrians on the streets. The ETH dataset
consists of two video recordings (named ETH, HOTEL) of
duration 8.5 and 13 minutes respectively, with 750 pedestri-
ans in total. The UCY dataset consists of three video record-

http://www.vision.ee.ethz.ch/en/datasets/
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ings (named ZARA1, ZARA2, UCY) of duration 36s, 3.5
minutes, and 6 minutes respectively, with 785 pedestrians
in total.

These datasets contain complex interactions among pedes-
trians such as grouping, crossing from different directions,
overtaking, reacting to sudden movements etc. and are
very representative of pedestrian behavior. Popular mod-
els such as (Alahi et al., 2016), (Gupta et al., 2018), (Vem-
ula et al., 2018) all benchmark their performances on these
datasets. Among the 5 video recordings, UCY has a high
crowd density with as many as 52 pedestrians present at a
single frame.

Along with image videos, the locations of all pedestrians
are recorded. ETH and HOTEL recorded pedestrian loca-
tions in meters. ZARA1, ZARA2 and UCY recorded pedes-
trian locations in pixels. We performed a homographic esti-
mation similar to (Gupta et al., 2018) to convert the pedes-
trian location units from pixels to meters. All videos are
recorded at 25 FPS. However, we extract pedestrian in-
formation at 2.5 FPS to be consistent with (Alahi et al.,
2016) and (Gupta et al., 2018). For every pedestrian, we
performed bi-linear interpolations if pedestrian location in-
formation is missing at a particular frame.

Dataset size avg #ped max #ped
ETH 234 8.1 25

HOTEL 445 6.4 19
ZARA1 688 9.5 51
ZARA2 989 7.7 38
UNIV 521 8.3 22

Table 1. Dataset Statistics

4.2. Experiment Setup

Evaluation Metrics. Similar to prior work (Alahi et al.,
2016), (Gupta et al., 2018), (Sadeghian et al., 2018), we
use two metrics to evaluate our model’s accuracy:

• Average Displacement Error (ADE): The average
L2 distance between the predicted location and the
ground truth location over all prediction time steps.

• Final Displacement Error (FDE): The L2 distance be-
tween the predicted final destination and the ground
truth final destination at the end of the prediction time
period.

Baselines. We employ the following models as baselines
that we hope to surpass with respect to the above proposed
metrics.

• Linear: A simple linear regressor model that estimates
linear parameters by minimizing the least square error
(ADE).

• LSTM: A vanilla LSTM model with a LSTM sequence

on every single pedestrian.
• S-LSTM: The popular Social-LSTM model proposed

by (Alahi et al., 2016). This model builds on top of
the vanilla LSTM by adding a social pooling layer that
takes neighboring pedestrian behavior into account.

State-of-the-art models. Having realized how difficult the
task is, we are no longer treating the following models as
baselines. Instead, we would like to see how close our
model can compete with these state-of-the-art models.

• S-GAN: A socially generative GAN model built on top
of pedestrian LSTM sequences to predict trajectories
as proposed by (Gupta et al., 2018).

• S-GAN-P: An advanced version of the Social-GAN
model by adding a global social pooling layer to
consider all present pedestrians before the decoding
phase, also proposed by (Gupta et al., 2018).

• SoPhie: The current state-of-the-art model in pedes-
trian predictions proposed by (Sadeghian et al., 2018).
On top of the Social-GAN model, this model takes
a multi-model approach by taking in image patches
around pedestrians as extra input information and also
adds attention mechanisms to focus on relevant neigh-
boring pedestrians.

Evaluation Methods. We evaluate our models in a sim-
ilar fashion as (Alahi et al., 2016), (Gupta et al., 2018)
and (Sadeghian et al., 2018). We use the leave-one-out ap-
proach by training on 4 sets and testing on the remaining
set. When we use the term ’performance on dataset X’, we
imply the performance obtained by training our model on
the other 4 datasets and evaluated on dataset X. We observe
the trajectory for 8 time steps and predict trajectories for all
present pedestrians for 12 time steps in the future.

Because the input state to our model requires a constant
number of pedestrians, we first determine the maximum
number of pedestrians present in a given frame across all
training datasets, then we use this as the number of input
states to our model. We index pedestrians and use −1 as
a placeholder for nonexistent pedestrians in order to fill up
the input states. Moreover, We ignore pedestrians who do
not have complete information during both the observation
and prediction time periods. In other words, if a pedestrian
enters the frame late or exits the frame early, it will not
be counted. Upon close inspection of the state-of-the-art
models’ codes, we discover that this preprocessing step is
consistent with the other approaches.

4.3. Quantitative Examination

Evaluation Metrics The first quantitative analysis would
be mainly focus on the two evaluation metrics being used,
namely ADE and FDE. As shown in Table 2 (the lower
the better), we can see that linear model performances are
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Metric Dataset Linear LSTM S-LSTM S-GAN S-GAN-P SoPhie Ours

ADE

ETH 1.33 1.09 1.09 0.81 0.87 0.70 0.99
HOTEL 0.39 0.86 0.79 0.72 0.67 0.76 0.41
UNIV 0.82 0.61 0.67 0.60 0.76 0.54 0.72

ZARA1 0.62 0.41 0.47 0.34 0.35 0.30 0.61
ZARA2 0.77 0.52 0.56 0.42 0.42 0.38 0.44

AVG 0.79 0.70 0.72 0.58 0.61 0.54 0.63

FDE

ETH 2.94 2.41 2.35 1.52 1.62 1.43 1.90
HOTEL 0.72 1.91 1.76 1.61 1.37 1.67 0.71
UNIV 1.59 1.31 1.40 1.26 1.52 1.24 1.48

ZARA1 1.21 0.88 1.00 0.69 0.68 0.63 1.03
ZARA2 1.48 1.11 1.17 0.84 0.84 0.78 0.81

AVG 1.59 1.52 1.54 1.18 1.21 1.15 1.19

Table 2. Quantitative results of our model, the baseline models and our state-of-the-art models with prediction of 12 future time steps.
Error reported are ADE and FDE in meters.

generally not on par with other models because it is unable
to model the complex social interactions among pedestri-
ans. Social-LSTM models step up the performance by tak-
ing neighboring pedestrians into account via social pooling.
Despite it has been shown to have significant qualitative
pedestrian behavior interpretations in (Alahi et al., 2016),
we were unable to make Social-LSTM defeat the vanilla
LSTM baseline (similar to (Gupta et al., 2018)). Social-
GAN models are a further step up by approaching the task
from a generative perspective. The SoPhie model, being
the most sophisticated model by combining various proven
architecture modules together, proves to output the most
accurate results within all baselines that we used. Besides,
we also observe that the results of the two evaluation met-
rics, ADE and FDE, are consistent across all datasets.

Due to the time constraint of this project. We have yet to
fine tune the hyper-parameters of our model. The perfor-
mance of our model is shown at the last column in Table
2. We can see that our model, similar to other models, per-
formed worst on the ETH dataset. Pedestrians in the ETH
dataset move vertically. Due to the fact that our dataset is
small, moving patterns of pedestrians can pose a signifi-
cant bias in our dataset. We can also see that our model
does not perform well on the UNIV dataset. This is be-
cause the UNIV dataset is the most crowded dataset with
extremely complicated interactions. Other approaches also
do not perform well on the UNIV dataset.

When comparing our model’s performance with other ap-
proaches, we can see that our model performed equal or
better than our target baseline models (Linear, LSTM,
S-LSTM). On both ADE and FDE, our model’s perfor-
mance only falls slightly short on the UNIV and ZARA1
datasets, but beats the baseline models on the other three
datasets. When comparing our model to the state-of-the-
art models, our model performs worse on the ETH and

ZARA1 datasets, and is on par with the other models on the
UNIV and ZARA2 datasets. Most surprisingly, our model
achieves the best performance on the HOTEL dataset, even
surpassing all state-of-the-art dataset performances. As
a result, we conclude that we have achieved satisfactory
progress in this course project.

4.4. Ablation study

Metric Dataset n-RNN e-RNN Combined

ADE

ETH 1.09 1.13 0.99
HOTEL 0.86 1.01 0.41
UNIV 0.61 1.17 0.72

ZARA1 0.41 0.75 0.61
ZARA2 0.52 0.55 0.44

AVG 0.70 0.92 0.63

FDE

ETH 2.41 2.15 1.90
HOTEL 1.91 2.20 0.71
UNIV 1.31 2.59 1.48

ZARA1 0.88 1.59 1.03
ZARA2 1.11 1.17 0.81

AVG 1.52 1.94 1.19

Table 3. Ablation study results of our model. n-RNN is the pure
node-RNN model. e-RNN is the pure edge-RNN model. n-RNN
performances are the same as the vanilla LSTM model.

In this section we present our ablation study on our over-
all model. As mentioned in the Method section, our model
consists of two RNNs, the edge-RNN and the node-RNN.
We present our model’s ablation study by studying the
model’s pure edge-RNN form and pure node-RNN form
respectively.

The pure node-RNN is essentially a GRU RNN model on
each pedestrian. Thus, it is similar in performance to the
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Figure 4. Qualitative results of our model vs the LSTM baseline model. The solid lines represent the ground truth trajectories. The dashed
lines represent the trajectories predicted by our model. The dotted lines represent the trajectories predicted by the LSTM baseline model.
Different colors represent different pedestrians. The first 8 frames of each trajectory are the observation trajectories and remain the same
for all three cases. Our model’s predicted lines are closer to the ground truth lines.
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vanilla LSTM model. In our experiments, we found simi-
lar performances between the vanilla LSTM model and the
vanilla GRU model. Here we report the vanilla LSTM
model results. The pure edge-RNN model is a model
that solely replies on the relationships among each pair of
pedestrians.

We can see that the pure node-RNN (LSTM) model per-
forms better than the pure edge-RNN model. This sug-
gests that the temporal information captured by node-RNN
is more important to predicting future trajectories than the
context information captured by edge-RNN by itself. How-
ever, when we combine edge-RNN and node-RNN, we
can see that our model imporved 10% on average ADE
and 21.7% on average FDE. This suggests that the inter-
pedestrian relationships captured by edge-RNN is indeed
helpful and complement the temporal information captured
by node-RNN, which results in superior performance.

4.5. Qualitative Examination

Some qualitative results are shown in Figure 4. We can ob-
serve a few interesting points comparing the ground truth
with paths generated by our model as well as the base-
line LSTM model. We use LSTM as our baseline model
to compare with because it shows better performance than
the Social-LSTM model.

First, we can observe that our model is able to generate
more accurate path, closer to the ground truth, than the
baseline model in the more straight forward case. We can
see this from the top two graphs shown in 4, in which only
a few pedestrians are involved in the traffic. Our generated
path is closer, in some cases even completely overlap with
the ground truth path, while the baseline LSTM will gener-
ate path that quickly digress from the ground truth even in
the most simple two pedestrian scenarios.

Second, in a more complex system as shown in the middle
two graphs, our model tends to try following previous path
as much as possible, yielding sub-optimal results. For in-
stance, the blue pedestrian made a huge turn in the graph
on the right in the middle, but our generated path, together
with the one generated by the baseline LSTM model, still
follows the straight line of where he/she used to head to.
On the other hand, this could also provide benefits as we
can see that our generated paths are closer to those cases
where pedestrians are less affected by the crowd, such as
those green ones on the left.

Third, our model sometimes fail to avoid the collision as
shown in the figures. For instance, the two blue lines ac-
tually cross each other in the right graph in the middle.
However, this might due to the fact that they can cross the
same point at different time steps so that a collision can
be avoided. We can also observe similar behaviors of the

baseline model but overall the generated path avoid colli-
sion well.

These qualitative examinations shown above demonstrate
that our model is able to model the inter-pedestrian interac-
tions to a certain degree, thus predicting trajectories that are
closer to the ground truth compared to those generated by
the LSTM baseline, which has no consideration of pedes-
trian interactions.

5. Discussion and Future Work
We have proposed a method for predicting the future tra-
jectories of a group of pedestrians given their past trajecto-
ries. Our method leverages recent developments in graph
neural networks to account for interactions among pedes-
trians. We evaluated our methods on standard benchmarks
and showed that our methods achieve state-of-the-art per-
formance on certain sequences. Our results show evidences
that reasoning about interactions is indeed important in pre-
dicting movements of people in an social environment.

However, our method is only an initial attempt towards re-
lational reasoning in predicting social movements. There
are several key limitations which leave room for future
work.

First, the inputs to our network are raw pedestrian loca-
tions, which contain very limited information. Inputs that
contain much richer information such as image patches
from the captured video sequence or even depth measure-
ments from 3D sensors can potentially boost the perfor-
mance of our model.

Second, the relational block treats every interaction in the
same way as the parameters in the multi-layer percep-
tron that operate on edge embeddings are shared across all
edges. Nonetheless, in reality there are many types of dif-
ferent interactions. For instance, a couple may be walking
very close to each other while strangers will try to keep a
distance from each other. A more sophisticated approach
would be to first classify the type of interaction and then
use different networks to process the edge embeddings of
different interaction types.

Finally, self-attention models have turned out to be a strong
alternative to recurrent models in many tasks that require
sequence prediction such as machine translation. Thus,
replacing the GRU in our proposed model with a self-
attention mechanism is a promising direction tot pursue,
which may lead to networks that can model interactions for
longer time periods, as self-attention does not suffer from
vanishing or exploding gradients. However, one bottleneck
is the large amount of data and computation required for
training self-attention models, which we do not have ac-
cess to during the course of this project.
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