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Abstract

The bond market is very important to the econ-
omy. Compared to equities, bonds have lower
liquidity and transparency; hence, there is less
public data available. Adding information from
correlated assets with greater liquidity would
help increase forecasting accuracy for bond
prices. In this work, we construct a pipeline for
bond forecasting with factors. We choose fac-
tors that are considered to affect bond prices in fi-
nance literature, recover the structure of a graph-
ical model, and use the resulting factors for fore-
casting.

1. Overview
Our project is on using graphical models for valuing finan-
cial assets, specifically corporate bonds.

Graphical models are commonly used in the field of econo-
metrics for predicting macroeconomic risk, as they can
model a firm’s risk of bankruptcy (default) conditioned on
external factors. Hidden Markov Models are referred to as
”regime-switching models” for their use in predicting the
onset of bull or bear markets. Besides risk modeling, most
applications of graphical models have been used for stock
price and risk forecasting.

The markets for less-liquid assets such as bonds are even
larger than stocks: the global bond market is valued over
$100 trillion, as compared to S&P’s estimate of $64 tril-
lion for the global equity market (Federated Investors, Inc.,
2017). However, they are less active. This leads to less
transparency. As we have access to prices for bonds and
other assets, we intend to apply extant stock models to these
datasets.

Traditionally, when economists do asset value prediction,
they first come up with a theory, fix the regression struc-
ture, and then figure out the factor loads. Here we use an
alternative approach. We investigate the variable correla-
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tions, feed them into a graphical model and let the data tell
us the prediction structure. This is a novel application.

2. Literature Survey
Semi supervised learning (SSL) based algorithms have
been used in Park & Shin (2012) to investigate interrela-
tions and complexities between factors through a network.
The suggested method connects individual networks based
on similarities between factors and extracts influence of
the final similarities in the connected input factors and re-
sponse factors as its prediction value. The proposed stock
prediction model model considers causal complexities and
interrelations in various economic indices and factors like
exchange rates, oil prices, stock prices in other countries,
money interest rates and economic situations by joining
time series data to SSL. The structure of this SSL predic-
tion model is in the form of a graph where nodes repre-
sent time series variables that influence stock prices. And,
edges between nodes (adjacency matrix) denote connec-
tion strengths between two sets of time series. Connection
strengths in this adjacency matrix can take binary values
or Gaussian values depending on Euclidean distance be-
tween nodes. Predictions on unlabeled nodes are made af-
ter learning based on similarity matrices calculated at pre-
vious time steps. As such this SSL method relies on not
only input and target variables but also interrelations be-
tween them. Tests of this method on stocks listed in KOSPI
returned an area under curve (AUC) value of 0.72. The au-
thors extended this work by proposing a hierarchical graph-
ical model (Park & Shin, 2013). The proposed model has
two layers. The top layer contains global indicators such as
the directions of market indices and important commodi-
ties, while the bottom layer contains the individual stocks
in the Korean Stock Exchange (KOSPI). A latent layer is
included in between.

In Cerchiello et al. (2017), the authors introduce a novel
framework, based on graphical Gaussian models, which
can estimate systemic risks with stochastic network mod-
els based on two different sources, viz., financial markets
and financial tweets, and propose a way to combine them,
using a Bayesian approach. Such a model has been shown
to be able to derive the network that best describes inter-
relationships between financial institutions on the basis of
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their market price data, and hence, the risk contagion. Twit-
ter data gives us a source of data that can supplement mar-
ket prices. The data considered in this paper comprises of
financial tweets on a number of banks which have been col-
lected on a daily basis. Daily variation of this ‘bank senti-
ment’ from Twitter is used to build a undirected Gaussian
graphical model which is combined with graphical models
based on market data, by means of a Bayesian approach.
An advantage of this model lies in the fact that it can in-
clude systemic risk models for institutions that are not pub-
licly listed, using just the tweet data component.

In Zhu & Barber (2015), the authors use hierarchical mod-
els to estimate multiple related Gaussian graphical models
(GGM) on the same sets of variables. The said hierarchi-
cal model encapsulates our prior belief about the shared
structure across multiple graphs. This hierarchical model
is optimized to find the maximum a posteriori (MAP) esti-
mate of precision matrix Ω. The ensuing optimization com-
bines a likelihood term with non-convex log-shift penalty
functions. The use of non-convexity in penalty helps in
threshold weak signals to zero, while leading to reduced
shrinkage on edges with strong signals. This leads to good
selection and estimation performances. One thing worth
noting here is that, the mentioned optimization problem is
convex under some mild conditions even with the use of
non-convex penalty. Experiments of this method are done
with stock price and bikeshare data. Comparisons of the re-
sults of this method with methods that use convex penalty
functions shows that the use of non-convexity in penalty
functions leads to less bias on strong signals, thereby mak-
ing it possible to obtain good selection and estimation per-
formance at the same time.

In Cerchiello & Giudici (2016), the authors propose a
new Gaussian graphical model to estimate systematic risks.
This is the first work where risk estimation has been done
through the use of financial market and balance sheet data
in a combined perspective. In this model, the conditional
dependencies between financial institutions are reduced to
correlations between countries, and correlations between
institutions within countries. These correlations are then
used to find systemic country effects and idiosyncratic
bank-specific effects. The model proposed in this work fo-
cuses on structural learning to infer the network model that
best describes interrelationships between financial institu-
tions based on the given data. Experiments of this model
are done to estimate systemic risks of large banks in the
European Union. Such an analysis has been shown to ac-
curately identify central institutions whose failure could re-
sult in breakdown of the entire banking system.

Denev (2015) focuses on modeling financial networks as
PGMs. With proper calibration, Bayesian Nets, Markov
Random Fields, Chain Graphs and Directed Cyclic Graphs

are used to capture the conditional independence and fur-
ther predict both probabilities of default and asset returns.

As most financial data are time series, special technique is
required. Reeson (2009) employees Dynamic Linear Mod-
els to 30 funds from Vanguard and does portfolio analysis
using Gaussian graphical models.

Filiz et al. (2012) uses toric and Ising models for correlated
defaults prediction. It explains default dependence, fat-tail
of the loss distribution and implied correlation smile, while
providing a calibration algorithm based on maximum like-
lihood estimation.

Belloni et al. (2016) propose a way to do financial risk man-
agement using prediction from quantile graphical models.
These models capture non-Gaussian settings in economet-
ric applications. They also show that QGM can represent
tail interdependence, which is extremely useful to model
extreme events.

Giudici & Spelta (2013) compares marginal correlation
networks, static Bayes nets, dynamic Bayes nets (also
contains a vector autoregressive component), and Granger
causality networks for modeling time series. The applica-
tion is the estimation of systematic risk for different coun-
tries using total liabilities of international banks.

Balcilar et al. (2015) uses economic policy uncertainty
(EPU) measures for South Africa and twenty other mar-
kets combined with twenty other factors, including index
returns and macroeconomic indicators. From a Gaussian
graphical model, the authors estimated the rolling-window
posterior probabilities of excess returns conditioned over
each of these factors.

Hidden Markov models are also commonly used in eco-
nomic forecasting. Salhi et al. (2016) show HMM’s per-
forming well against GARCH, while Alvi (2018) demon-
strates crude oil price forecasting using HMM’s and Belief
networks.

Finally, we can investigate graphical models that use non-
classical probabilities. Moreira et al. (2018) compares clas-
sical Bayes nets with quantum (non-classical) Bayes nets
by using them to model the process of an online loan ap-
plication. While quantum networks can also become in-
tractable for large state spaces, they are able to represent
more-complex interference effects between variables.

3. Methodology
In our work, we intend to look at the effects of existing fac-
tors on future bond prices. This is inspired by common ap-
proaches used by financial analysts: companies are affected
not only by marketwide forces but also by sector-specific
forces. For instance, investors always note a company’s
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level of debt when measuring its credit risk. Companies
with a higher debt-to-asset ratio can be more risky; hence,
investors may demand a higher return when purchasing the
company bonds.

As a company may be affected by many sector-specific fac-
tors, we have decided to focus on companies that operate
primarily within a single sector. We chose the petroleum
industry as it is centered around crude oil, a widely-traded
commodity.

From a modeling perspective, one can begin by examin-
ing whether the available factors are correlated in order to
estimate an undirected graphical model. For this purpose,
we chose to apply the graphical Lasso (Hastie et al., 2015).
We will first describe how we obtained and preprocessed
our data, then follow with a description of the various esti-
mation methods we applied.

4. Data collection & processing
All data are drawn from Bloomberg terminal. We extract
the following nine time series:

• Oil and gas company, Chevron Corp. US 5-
year benchmark bond daily last price, 3/26/2014-
3/25/2019

• Chevron US stock daily last price, 3/26/2014-
3/25/2019

• Oil and gas company, ExxonMobil Corp. US 5-
year benchmark bond daily last price, 06/19/2015-
03/25/2019

• ExxonMobil US stock daily last price, 3/26/2014-
3/25/2019

• S&P Oil industry select index last price, 3/26/2014-
3/25/2019

• US government 10-year treasury quotes, 3/26/2014-
3/25/2019

• West Texas Intermediate (WTI) crude oil daily spot
commodity price, 03/26/2014-03/25/2019

• Chevron Corp. total debt/total assets ratio, quarterly,
2014Q1-2018Q4

• ExxonMobil Corp. total debt/total assets ratio, quar-
terly, 2014Q1-2018Q4

We draw them in the following figures.

Clearly they are all closely related, which is the motivation
for linking them using graphical models.

These are three different types of time series: trading
quotes, asset prices, and financial statements statistics. Be-
fore we train our model on these data we need to process
them with noise-filter, auto-correlation analysis, and sea-
sonality analysis, respectively.

Corporate bond price (or equivalently, bond yield) is con-
sidered to reflect the market’s belief of the the default risk
of the bond issuer. Similarly, treasury yield represents in-
vestors’ confidence in the US financial system. However,
last price quotes incorporate trading noises that may mask
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the true underlying information. We use a plain version of
Kalman filter algorithm (see Welch & Bishop (1995)) to
unravel this time series, and feed our model with he pro-
cessed series.

Commodity price of crude oil and the stock prices of
ExxonMobil and Chevron are all asset prices. They share
several significant characteristics: prices everyday is highly
correlated and tend to be persistent than in standard random
walk model; the distribution of price return is fat-tailed
compared to standard normal distribution; the volatility of
prices will be clustered around certain values. All factors
tend to interact with each other, which makes it impossi-
ble to separately address these issues. We employ an Au-
toregressive integrated moving average (ARIMA) model
for the conditional mean, and a Generalized AutoRegres-
sive Conditional Heteroskedasticity (GARCH) model for
the conditional variance. For hyper-parameter setup we fol-
low Mohammadi & Su (2010). Since the S&P Oil industry
select index is just a weighted average of the stock prices
in oil industry, the processing method is the same as with
individual asset prices.

Financial statements statistics is highly affected by the sea-
sonality of market supply and demand. A simple way to
cope with this issue is a combination of AR and MA mod-
els. First, we regress debt/asset ratio on the moving average
of the ratio of the same quarters in the last few years. We
then obtain the seasonality effect. Finally, we adjust for it
whenever oscillation around the underlying trend arises.

5. Code
It is essential to keep track of conditional independences
between nodes in graphs in machine learning and statistics.
Gaussian distributions are completely defined by two vari-
ables viz. their mean and variance. Zero correlations be-
tween these variables will imply statistical independence.
One can use a similar analogy between between condi-
tional independence and the inverse covariance for Gaus-
sian distributions. Such an equivalence can be used in
probability distributions like multivariate Gaussians to esti-
mate inverse covariance matrices. Indices of zero and non-
zero values in an inverse covariance matrix (for a network
where variables are modelled by Gaussian distributions)
can give us information about conditional independence or
lack thereof. Such estimation is widely used to uncover
conditional dependencies and independences in gene regu-
latory networks in cellular biology and neural interactions.
In our project, we seek to analyze conditional dependencies
and independences in networks which contain information
about bond prices from two companies (ExxonMobil and
Chevron) and oil prices. We use a software package called
‘skggm’(Laska & Narayan, 2017) which is geared toward
Gaussian graphical models for this exercise.

skggm has the following submodules for estimation of in-
verse covariance matrix:

1. QuicGraphicalLasso: QuicGraphicalLasso is a vari-
ant of QUIC (QUadratic approximation of Inverse
Covariance matrices) (Hsieh et al., 2014) which is a
second-order algorithm that solves the `1-regularized
Gaussian maximum likelihood estimation (MLE). For
n independently drawn, p-dimensional Gaussian ran-
dom samples X ∈ Rn×p with sample covariance Σ̂,
it is possible to calculate the maximum likelihood es-
timate of the inverse covariance matrix Θ by using a
graphical lasso method. Given a regularization penal-
ity λ > 0, the `1-regularized Gaussian MLE for Θ can
be written as the following:

Θ̂(Λ) = arg min
Θ>0

log det Θ + tr(Σ̂Θ) +

p∑
i,j=1

λij |Θij |

(1)

In equation 1 , λij ∈ Λp×p which is a symmetric ma-
trix with non negative entries. To ensure that Θ stays
positive definite, we do not penalize the diagonal en-
tries λjj . For off-diagonal elements (i 6= j), we have
λij = λji ≡ λ ∀i 6= j. Here, Σ is the sample covari-
ance matrix.

In QuicGraphicalLasso, we modify the objective
given in equation 1 to the following.

Θ̂(Λ) = arg min
Θ>0

log det Θ + tr
[
R(Σ̂)Θ

]
+

p∑
i,j=1

λij |Θij |

(2)

R(Σ̂) is given in equation 3.

R(Σ̂) =
[
diag(Σ̂)

]−1/2

Σ̂
[
diag(Σ̂)

]−1/2

(3)

Among the advantages of QuicGraphicalLasso over
GraphicalLasso are support for a matrix penalization
term and speed.

2. QuicGraphicalLassoCV: QuicGraphicalLassoCV is
an optimized cross-validation model selection imple-
mentation of QuicGraphicalLasso. It finds a sparse
inverse covariance with cross-validated choice of the
L1 penalty. As like QuicGraphicalLasso, QuicGraph-
icalLassoCV implements the Graphical Lasso algo-
rithm with matrix penalization.
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3. QuicGraphicalLassoEBIC: QuicGraphicalLassoE-
BIC computes a sparse inverse covariance matrix es-
timation using quadratic approximation andExtended
Bayesian Information Criteria (EBIC) for model se-
lection (convenience Class). More information on
EBIC can be found in Foygel & Drton (2010).

4. AdaptiveGraphicalLasso: AdaptiveGraphicalLasso
uses a two step estimation procedure.

• Get an initial sparse estimate.
• Obtain a new penalization matrix from the orig-

inal estimate. In this step, the resulting coeffi-
cients are used to generate adaptive weights and
QuicGraphicalLasso is performed for a refit with
these weights.

5. ModelAverage: ModelAverage works by subsam-
pling the training data and computing a graphical lasso
estimate where the penalty of a random subset of co-
efficients has been scaled. By performing this dou-
ble randomization several times, ModelAverage as-
signs high scores to features that are repeatedly se-
lected across randomizations. In essence, ModelAv-
erage is an ensemble meta-estimator which computes
different fits with a user-specified estimator and aver-
ages the support of the resulting precision estimates.
Here, a variant of graphical lasso is implemented in
two steps:

• Get bootstrap samples by randomly subsampling
X.

• Draw a random matrix penalty.

6. Ledoit-Wolf estimator: Ledoit-Wolf is a particular
form of shrinkage, where the shrinkage coefficient is
computed using techniques outlined in Ledoit & Wolf
(2004).

Figures 1, 2, 3 and 4 show results of covariance and in-
verse covariance estimators from different model selection
method when nine features i.e. bond prices for Chevron
and Exxon-Mobil, bond yield percentages for Chevron and
Exxon-Mobil, stock prices for Chevron and Exxon Mobil,
oil prices, S & P oil indices and 10 year Treasury prices are
used.

Figures 10, 11, 12 and 13 in section A show results of
covariance and inverse covariance estimators from different
model selection method when five features i.e., bond prices
from Chevron and Exxon-Mobil, bond yield percentages
from Chevron and Exxon-Mobil and oil prices are used.

In our estimates, we see that the S&P Oil Index has a lower
covariance with the other factors besides the Chevron and
Exxon stock prices. While we will retain this factor for our
current forecasts, it does not add as much information as
the other factors.

Figure 1. Inverse covariance estimates from standard (empirical),
Ledoit-Wolf, GraphLassoCV, QuicGraphicalLasso, QuicGraphi-
calLasso + GridSearchCV (GSCV) and QuicGraphicalLassoCV
methods. The symbols “ll”, “kl” and “fro” depict score metric:
log-likelihood, kl and frobenius respectively. Nine features i.e.
bond prices for Chevron and Exxon-Mobil, bond yield percent-
ages for Chevron and Exxon-Mobil, stock prices for Chevron and
Exxon Mobil, oil prices, S & P oil indices and 10 year Treasury
prices are used during the computation of these estimators.

Figure 2. Inverse covariance estimates from standard (empiri-
cal), QuicGraphicalLasso-EBIC, ModelAverage, Adaptive CV
and Adaptive BIC for different parameters. Nine features i.e.
bond prices for Chevron and Exxon-Mobil, bond yield percent-
ages for Chevron and Exxon-Mobil, stock prices for Chevron and
Exxon Mobil, oil prices, S & P oil indices and 10 year Treasury
prices are used during the computation of these estimators.
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Figure 3. Precision estimates from standard (empirical), Ledoit-
Wolf, GraphLassoCV, QuicGraphicalLasso, QuicGraphicalLasso
+ GridSearchCV (GSCV) and QuicGraphicalLassoCV methods.
The symbols “ll”, “kl” and “fro” depict score metric: log-
likelihood, kl and frobenius respectively. Nine features i.e. bond
prices for Chevron and Exxon-Mobil, bond yield percentages for
Chevron and Exxon-Mobil, stock prices for Chevron and Exxon
Mobil, oil prices, S & P oil indices and 10 year Treasury prices
are used during the computation of these estimators.

Figure 4. Precision estimates from standard (empirical),
QuicGraphicalLasso-EBIC, ModelAverage, Adaptive CV and
Adaptive BIC for different parameters. Nine features i.e. bond
prices for Chevron and Exxon-Mobil, bond yield percentages for
Chevron and Exxon-Mobil, stock prices for Chevron and Exxon
Mobil, oil prices, S & P oil indices and 10 year Treasury prices
are used during the computation of these estimators.

Figure 5. Top plot shows bond prices for Chevron and bottom plot
shows stock prices for Chevron. In both plots, the blue lines show
actual values of prices while red line show forecasted values of
prices. Nine time series based features, viz. bond prices for
Chevron and Exxon-Mobil, bond yield percentages for Chevron
and Exxon-Mobil, stock prices for Chevron and Exxon Mobil, oil
prices, S & P oil indices and 10 year Treasury prices are used
for forecasting. The forecasting results shown in these plots are
obtained through the use of Random Forest regressor.

6. Forecasts
After we find conditional (in)dependencies using graphi-
cal lasso methods, we move to forecast values of various
random vectors using information gotten from the use of
graphical lasso methods. Two techniques are popular when
it comes to forecasting of values of from time series data -
1.〉 Random Forests and, 2.〉 Recurrent Neural Networks.

6.1. Random Forests

Random Forest is a popular supervised learning model
which can accept a vector x = (x1, . . . , xk) for each ob-
servation and predict output values y. They can be used
for both regression and classification tasks with the use of
multiple decision trees. In our work, we aim to use Ran-
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Figure 6. Top plot shows bond prices for Exxon-Mobil and bot-
tom plot shows stock prices for Exxon-Mobil. In both plots, the
blue lines show actual values of prices while red line show fore-
casted values of prices. Nine time series based features, viz. bond
prices for Chevron and Exxon-Mobil, bond yield percentages for
Chevron and Exxon-Mobil, stock prices for Chevron and Exxon
Mobil, oil prices, S & P oil indices and 10 year Treasury prices
are used for forecasting. The forecasting results shown in these
plots are obtained through the use of Random Forest regressor.

Figure 7. This plot shows oil prices. The blue line shows true
prices of oil, while the red line shows predicted prices of oil.
Nine time series based features, viz. bond prices for Chevron and
Exxon-Mobil, bond yield percentages for Chevron and Exxon-
Mobil, stock prices for Chevron and Exxon Mobil, oil prices, S &
P oil indices and 10 year Treasury prices are used for forecasting.
The forecasting results shown in these plots are obtained through
the use of Random Forest regressor.

dom Forest regressors to forecast bond prices, stock prices
for Chevron and Exxon-Mobil and prices of crude oil.

To achieve this, we consider nine time series based features,
viz. bond prices for Chevron and Exxon-Mobil, bond yield
percentages for Chevron and Exxon-Mobil, stock prices for
Chevron and Exxon Mobil, oil prices, S & P oil indices
and 10 year Treasury prices. Each of these features can be
considered as a random vector. For each of these random
vectors, we have use feature standardization. This makes
the values of each feature in the data have zero-mean and
unit-variance.

Once we have feature scaled our data, we can use it to train
a Random Forest regressor. We divide the time-series data
into sections of 80 and 20 percent splits. The 80 percent
split is the training data and it corresponds to the older time
snapshots of the data. The 20 percent split is used for fore-
casting and it corresponds to the most recent section of the
time series data. After dividing our data in this 80-20 split
regions we use a Random Forest regressor with 20 num-
ber of trees in the forest. We forecast data for bond and
stock prices of Chevron and Exxon-Mobil and oil prices.
Figures 5, 6 and 6 show results that we get from Random
Forest regression. We use coefficient of determination (R2

regression score function) to determine the effectiveness
of our predicted results. For forecasting of stock prices,
we obtain R2 score functions of 0.9982 and 0.9845 for
Chevron and Exxon-Mobil. We get R2 score functions of
0.8917 and 0.5237 for forecasts of bond prices for Chevron
and Exxon-Mobil respectively. For predictions of oil price,
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Figure 8. Company forecasts using the RNN

we get a R2 score function of 0.9945.

We conduct many experiments with different numbers of
trees in our random forests and find that 20 is the optimal
number of trees (usingR2 score function as metric to deter-
mine effectiveness of forecasts). Further increase of num-
ber of trees does not significantly increase the goodness
of our forecasts. We also conduct experiments by choos-
ing different combinations of features (from the aforemen-
tioned nine time series based features). Figures 14, 15
and 16 in section B show results of forecasts when five fea-
tures are used. Our experiments show that best results are
obtained when all nine features are used for forecasting.

6.2. Recurrent Neural Network

The Recurrent Neural Network (RNN) is a type of deep
network used for predicting sequential data, since the recur-
rent network units can ”remember” past data. We use the
same features as before (except bond yields), which will be
standardized before use. We will train our RNN to forecast
all seven features using a moving window of 32 data points.
Our RNN has an LSTM layer with 32 recurrent units. We
used the Mean Squared Error (MSE) to evaluate our re-
sults, shown in Figures 8 and 9. The model achieved an
MSE of 0.0569 on Chevron, 0.3843 on Exxon, and 10.39
on the crude oil (note the differences in data scale). On
a visual basis, the Random Forest achieves a better fit on
crude, while the RNN has a better fit to the bond price.

Discussion and Future Work
In this work, we have demonstrated a pipeline for explain-
able bond forecasting. Bond forecasting is often hampered
by a lack of liquidity and transparency. While the finance
literature has postulated relationships between bond prices
and related factors, their usage has been mostly to explain

Figure 9. Crude oil forecasts using the RNN

past performance. By contrast, we actively discover cor-
related factors from available data, and then use them for
future forecasting.

Our results on bonds from two major oil companies have
shown the benefits of this approach. Not only can our
model forecast the bond prices, but it can also forecast the
major underlying commodity (oil) as well.

Future work can include several directions. First, we can
see whether this model holds for bonds of different term
lengths from the same issuer. Investor demands are differ-
ent for longer and shorter bonds, so there may differences
in factor correlations. Also, we can construct models for
other sectors, which can vary based on the economic struc-
ture of the sector. Finally, we can use the explanatory rela-
tionships of our model for related purposes such as finan-
cial risk modeling.

A. QuicGraphicalLasso results with 5
features

.

In this section in figures 10, 11, 12 and 13, we show results
of covariance and inverse covariance estimators from dif-
ferent model selection method when five features i.e., bond
prices from Chevron and Exxon-Mobil, bond yield percent-
ages from Chervron and Exxon-Mobil and oil prices are
used.

B. Random Forest results with 5 features
In this section we show results of forecasts obtained from
Random Forest when only five features, viz., bond prices
from Chevron and Exxon-Mobil, bond yield percentages
from Chevron and Exxon-Mobil and oil prices are used.
The results shown here are from a Random Forest regressor
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Figure 10. Inverse covariance estimates from standard (empiri-
cal), Ledoit-Wolf, GraphLassoCV, QuicGraphicalLasso, Quic-
GraphicalLasso + GridSearchCV (GSCV) and QuicGraphi-
calLassoCV methods. The symbols “ll”, “kl” and “fro” depict
score metric: log-likelihood, kl and frobenius respectively. Five
features i.e., bond prices from Chevron and Exxon-Mobil, bond
yield percentages from Chervron and Exxon-Mobil and oil prices
are used during the computation of these estimators.

Figure 11. Inverse covariance estimates from standard (empiri-
cal), QuicGraphicalLasso-EBIC, ModelAverage, Adaptive CV
and Adaptive BIC for different parameters. Five features i.e.,
bond prices from Chevron and Exxon-Mobil, bond yield percent-
ages from Chervron and Exxon-Mobil and oil prices are used dur-
ing the computation of these estimators.

Figure 12. Precision estimates from standard (empirical), Ledoit-
Wolf, GraphLassoCV, QuicGraphicalLasso, QuicGraphicalLasso
+ GridSearchCV (GSCV) and QuicGraphicalLassoCV methods.
The symbols “ll”, “kl” and “fro” depict score metric: log-
likelihood, kl and frobenius respectively. Five features i.e., bond
prices from Chevron and Exxon-Mobil, bond yield percentages
from Chervron and Exxon-Mobil and oil prices are used during
the computation of these estimators.

Figure 13. Precision estimates from standard (empirical),
QuicGraphicalLasso-EBIC, ModelAverage, Adaptive CV and
Adaptive BIC for different parameters. Five features i.e., bond
prices from Chevron and Exxon-Mobil, bond yield percentages
from Chervron and Exxon-Mobil and oil prices are used during
the computation of these estimators.
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Figure 14. This plot shows bond prices for Chevron. The blue line
shows actual values of prices while red line shows forecasted val-
ues of prices. Five time series based features, viz. bond prices for
Chevron and Exxon-Mobil, bond yield percentages for Chevron
and Exxon-Mobil, and oil prices were used for forecasting. The
forecasting results shown in these plots are obtained through the
use of Random Forest regressor.

which uses 20 trees. Figures 14, 15 and 16 show results of
forecasts when five features are used. In each of these plots
we find that the coefficient of determination is smaller than
the corresponding cases which were discussed in 6.1.

C. RNN results with 3 features
In Figures 17 and 18, we provide the RNN results using the
bond prices for Chevron and Exxon as well as the crude oil
price. The model achieved an MSE of 0.1424 on Chevron,
0.2264 on Exxon, and 1.927 on the crude oil (note the dif-
ferences in data scale).
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