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Abstract

Deep learning has produced models with high lev-
els of accuracy on a wide variety of tasks. These
models, however, are also often overconfident on
predictions for noisy data or regions of the fea-
ture space that are not part of the training set. We
propose a model utilizing normalizing flows for
predicting the error that a deep learning model
will have in regression tasks in a generalized set-
ting. Previous models that predicted error either
did so directly, or only predicted the parameters
of a simple distribution which did not fully reflect
the error distribution of model accurately. By
fully modeling the error distribution of model for
an input, our flow error model provides deeper
insight into the error landscape of the real data
with respect to the model. We also show that
our flow model achieves greater likelihood than a
baseline Gaussian model of the error distribution
of a neural network regression model.

1. Introduction
Despite the predictive accuracy of deep neural networks on
variety of learning tasks, a remaining challenge for DNNs
is to determine how well they generalize. The reliability
of DNNs on any data has become of greater importance
given their effectiveness in increasingly critical tasks such
as autonomous driving (Chen et al., 2015) and medical
diagonosis (Liu et al., 2014). Since current DNNs have
shown a tendency to overfit on the training data, it may
output significantly incorrect predictions on unseen exam-
ples. Consequently, quantifying the confidence of DNNs
becomes an important metric to determine when the DNN’s
prediction is incorrect.

To tackle this problem, there has been a significant amount

*Equal contribution 1School of Computer Science, Carnegie
Mellon University, Pittsburgh, USA. Correspondence to:
Neil Xu <ziyux@andrew.cmu.edu>, Shalom Yiblet <syi-
blet@andrew.cmu.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

of work in recent years using a Bayesian deep learning
framework to encode uncertainty into the model. A common
approach for Bayesian deep learning models is to param-
eterize a distribution over the weights, and use variational
inference (Graves, 2011; Kingma & Welling, 2013) for train-
ing. These models, however, suffer from utilizing Monte
Carlo methods for optimization, which large increases the
training time and often decreases the performance to the
the increased variance from learning against gradients of
samples.

As an alternative to Bayesian approach of learning a distri-
bution over weights, we can also create models that directly
predict the uncertainty of the data. These models, however,
often predict simple distributions over their outputs, and
consequently may fail to include the true uncertainty rela-
tionship in the data. This is primarily a problem when the
model is required to model a continuous probability distri-
bution in its output. In classification, the softmax output
of many classification models have the capacity to model
the entire range of distributions over discrete classes, and
does not suffer from this lack of capacity. For regression,
however, current approaches often uses simple distributions,
such outputting a Gaussian distribution by predicting both
its mean and variance parameters (Lakshminarayanan et al.,
2017). A key feature that a Gaussian fails to model is any
form of multimodality.

To address this deficiency in the mapping capability of the
output, we expand the range of distributions that our net-
work is capable of learning by incorporating normalizing
flows (Rezende & Mohamed, 2015) into our distribution
representation. We show that by having a more flexible fam-
ily of posteriors, we are able to more accurately model the
uncertainty of a model and that the flow posterior is capable
of representing output distributions that the standard Gaus-
sian distribution is incapable of. Furthermore, we derive
theoretical bounds for analyzing the variance of the learned
distribution that can be computed in a deterministic fashion,
avoiding the computational cost of Monte Carlo. Thus our
paper makes the following contributions:

1. Provides a DNN architecture for utilizing normalizing
flows in learning a more complex posterior that can
predict model uncertainty.

2. Empirically demonstrating the ability of this normal-
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izing flow model to more accurately predict the uncer-
tainty or performance of the model on a given input,
and also more closely reflect the true noise distribution
in the data.

3. Provide theoretical bounds of the variance of the output
distribution

2. Related Work
Bayesian deep learning (Neal, 1996) has become a pri-
mary formulation for modeling uncertainty in in DNNs.
In Bayesian learning a prior distribution is assumed over
the weights of a DNN, and a posterior distribution over the
weights is predicted given an input. The weight distribution
is then used to quantitatively infer an uncertainty value. A
significant challenge in Bayesian learning is performing
approximate inference of the posterior distribution.

Historically, Hamiltonian Monte Carlo inference for
Bayesian neural networks was first introduced in (Neal,
1996). Modern inference methods, however, generally try to
compute the approxmate posterior with deterministic meth-
ods to avoid the computational expense of MCMC methods.
This line of research was introduced by (Graves, 2011),
which proposed a variational inference using a factorized
Gaussian posterior. This method, however, formulated a
biased estimator of the posterior. Thus, (Blundell et al.)
formulates a unbiased estimator by using Monte Carlo gra-
dients and the reparamterization trick (Kingma et al., 2015)
to still backpropagate losses defined on samples from the
weight distribution to the variational parameters. (Hernndez-
Lobato & Adams, 2015) builds upon this work by backprop-
agating approximated probabilities of the loss to the varia-
tional parameters. In addition to deriving new paradigms,
many common DNN regularization techniques can be rein-
terpreted under the Bayesian framework. Dropout (Srivas-
tava et al., 2014) and batch normalization (Ioffe & Szegedy,
2015) have both been shown to be forms of Bayesian DNNs
by (Gal & Ghahramani, 2015) and (Teye et al., 2018) respec-
tively. More recently, (Louizos & Welling, 2017) proposes
utilizing normalizing flows to model the weight distribution
in Bayesian neural networks, and is the work most similar
to ours.

There has also been work done in directly modeling the
uncertainty of model prediction. This typically is done by
ensembling together the predictions of many trained mod-
els. In a reinforcement learning settings, (Osband et al.,
2016) uses bootstrapping to train multiple model heads,
from which predictions are are sampled. On the other hand,
(Lakshminarayanan et al., 2017) demonstrate that ensem-
bled DNNs that each predict uncertainty by outputting the
parameters of a Gaussian posterior over the target have com-
parable performance to Bayesian learning approaches while
avoiding the difficulty of approximating the weight posterior.

We consider our work an extension of (Lakshminarayanan
et al., 2017) that replaces the Gaussian posterior with a more
complex flow posterior. There has also been work in using
data that has label disagreements, and then directly training
a model on the uncertainty in the labels (Raghu et al., 2018).

Normalizing flows (Rezende & Mohamed, 2015) have been
introduced in recent years initially as a method for creating
more complex posteriors, but computationally efficient, in
variational inference. Inverse autoregressive flows (IAF)
(Kingma et al., 2016) develop an autoregressive technique
for creating distributions more flexible in higher dimensions.
IAF has been used successfully to perform model distillation
for audio synthesis (Oord et al., 2017), and image synthesis
(Kingma & Dhariwal, 2018), and text generation (Yang
et al., 2017). Other flow types that have had success include
masked autoregresive flows (Papamakarios et al., 2017) and
most recently, neural autoregressive flows (Huang et al.,
2018), which unite existing normalizing flows under a more
general framework based upon neural networks (?). Our
work aims to introduce these modern flow techniques to the
domain of uncertainty estimation.

3. Background
3.1. Normalizing Flows

Normalizing flows (Rezende & Mohamed, 2015) are a
method through which we can learn a best fitting distribu-
tion through learning a number of invertible transformations
from a simple distribution. This allows us to paramater-
ize a distribution that is more complicated than a Gaussian
and calculate the probability density and sample from it
efficiently.

Let f be Rd → Rd and invertible, and d be the dimension-
ality of z, a random variable that has been drawn from a
known distribution p that is computationally tractable. We
sample from the flow distribution q simply by calculating
z′ = f(z).

To compute the probability density of q, we utilize f−1, the
inverse of f :

q(z′) = p(z)

∣∣∣∣det
δf−1

δz′

∣∣∣∣ = p(z)

∣∣∣∣det
δf

δz

∣∣∣∣−1

(1)

Thus, we can compose k layers of flows together to create
a more complicated distribution. For invertible functions
f1, . . . fk, we can sample from the distribution by apply-
ing the functions sequentially to a sample from the base
distribution p:

zk = fk(. . . f1(z)) ∼ qk(zk) (2)

Thus, to perform inference about statistics of the learned
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flow distribution, we can easily perform Monte Carlo inte-
gration by using this sampling technique.

Consequently, we can also derive a recursive formulation
for computing the log-likelihood of qk:

ln qk(zk) = ln q0(z0)−
K∑
k=1

ln

∣∣∣∣det
δfk
δzk−1

∣∣∣∣ (3)

In a deep learning setting, this log-likelihood can be a op-
timizable objective, since each fi can also have a set of
parameters. Thus maximization of the log-likelihood can
simply accomplished by backpropagating the the gradient
to the parameters of each fi. This makes training using
standard neural network frameworks relatively easy since it
follows the same backpropagation paradigm.

In the following two sections we will discuss the types of
normalizing flows we use in order to construct the network.
For regression problems, the Real Nonvolume Preserving
Flow (RealNVP) (Dinh et al., 2016) and the Masked Au-
toregressive Flow (MAF) (Papamakarios et al., 2017) are
commonly the best performing normalizing flow paradigms.

3.2. Masked Autoregressive Flows

Different types of normalizing flows are fundamentally dif-
ferent families of models that characterize the f function.
A common paradigm in density estimation is to use some
form of autoregression i.e. parameterizing the flow transfor-
mation in some order indexed by the index set {ii, . . . , id}
(although typically in the indexing is just the order the di-
mensions are in). For output random variable z′, an autore-
gressive flow function results in:

z′ik = g(zik−1
, . . . , zi0) (4)

Specifically in Masked Autoregressive Flows (MAF) (Pa-
pamakarios et al., 2017), the autoregressive function used
for the flow distribution is the Masked Autoencoder for
Distribution Estimation (MADE) estimator introduced by
(Germain et al., 2015). For each dimension index i in z
being sampled, we calculate the function as:

zi = ui ∗ αi + µi (5)

where u is in the input random variable. We compute αi, µi
to be:

αi = fα(zi−1, . . . , z0) (6)

µi = fµ(zi−1, . . . , z0) (7)

where fα, fµ are implemented as autoregressive neural net-
work functions. For computational efficiency, the autore-
gressive property is implemented as a mask over a feedfor-
ward network that zeroes out the connections that don’t exist

between the dimensions of the output. The autoregressive
nature of the algorithm means that evaluating zi is expen-
sive. It cannot be done in parallel since each zi is dependent
on all previous zj where for all j < i.

Fortunately, computing inverse Jacobian does not require
this expensive autoregressive loop along the event dimen-
sion. Thus at training time, we are able to learn while
side-stepping this issue.

3.3. RealNVP

The RealNVP (Dinh et al., 2016) flow on the other hand
does not require this expensive autoregressive computation.
It is a far simpler model.

For an output vector z of dimension d, and an input vector
u of the same dimension. The transformation can be written
as:

z1:k = u1:k (8)
zk+1:d = uk+1:d ∗ σ(u1:k) + µ(u1:k) (9)

where u, and z are arbitrary neural network that output a
d − k dimensional value. Effectively, it copies the first k
dimensions while scaling and shifting the other remaining
dimensions as a function on the first k.

While the flow is still autoregressive in the sense that it acts
on it’s own values. It is a far simpler operation than the
MAF, and thus also far less computationally expensive and
more parallelizable.

3.4. Input Convex Neural Networks

In order to apply the bounds on the variance we must ensure
that the network is convex with respect to it’s input vectors.
(Amos et al., 2016) have applied input convex to various dif-
ferent hard problems in machine learning. They empirically
therefore argue that despite the fact that constraining the
DNN to be input convex greatly reduces the size of function
space, the DNN can still nevertheless learn to perform well.
For some of the problems they solved using their input con-
vex neural network, their methods matched the performance
of the state of the art.

3.5. Chernoff Variance Inequality

For a standard normal random variable Z and a transfor-
mation g : R → R that is absolutely continuous with a
derivative g′ such that E[g′(X)]2 ≤ ∞, (Chernoff, 1981)
shows that

V arg(Z) ≤ E[g′(Z)]2 (10)



Flow Posterior for Uncertainty Estimation

with equality if and only if g(X) is linear.

Chen (Chen, 1982) expanded this inequality to to the mul-
tivariate case. For a series of standard normal variables
{X1, X2, X3...Xn} and {g, g1, g2, g3...gn} be real measur-
able functions on Rn where

g(x1, x2, . . . xn)

=

∫ xi

0

gi(x1, . . . , xi−1, t, xi+1, . . . , xn)dt

+ g(x1, . . . , xi−1, 0, xi+1, . . . , xn)

almost everywhere. Then

V ar[g(X1, . . . , Xn)] ≤
n∑
i=1

E[gi(X1, . . . , Xn)]2

This set of functions gi with this specific relationship satis-
fied by the partial derivatives

∂

∂Xi
g(X1, X2, . . . , Xn)

4. Methods
4.1. Defining The Task

For a regression problem with input x and true value y. We
write the regression model as r where r(x) = ŷ

Given this formulation, our task is to at best infer the vari-
ance

V ar[y − ŷ | ŷ,x] (11)

We approach this problem, not by some direct regression
task on this variance, but through probabilistic inference.
We attempt to estimate the distribution p(y − ŷ | y,x)

By constructing a parametric distribution (via normalizing
flows):

qθ(y − ŷ | y,x) (12)

We can approximate p by minimizing against the conditional
cross entropy:

Ey−ŷ∼p[− log qθ(y − ŷ | y,x) | y,x] (13)

Since the cross entropy is lower bounded by the entropy we
know that this loss is minimized when qθ(y − ŷ | y,x) =
p(y − ŷ | y,x) almost everyhwere.

Since it is intractible to directly minimize against this objec-
tive, we instead approximate the objective through Monte
Carlo sampling.

4.2. Model Structure

Our model for regression error estimation is made out of
two components - the regression model itself and the error
model for estimating the distribution of the true error of the
regression model’s prediction. Our regression model is a
simple perceptron model trained with mean squared error.

The error model is composed of two parts - a perceptron
layer h that takes in x, ŷ as input and converts them into
µ, σ that parameterize a Gaussian:

µ = hµ(x, ŷ) = softplus(Wµ[x; ŷ] + bµ) (14)

σ = hσ(x, ŷ) = softplus(Wσ[x; ŷ] + bσ) (15)

and the stacked flow layers that transform the Gaussian
parameters into parameters of a flow distribution.

The error model is consequently agnostic to the regression
model - this error model can be separately trained added to
any regression model and learn its error distribution.

4.3. Deriving The Variance

With the objective, and the model in tow, we now will
develop the core contributions of this paper. Given that
we have this probabilistic model qθ we now develop three
different ways of constructing the variance in the following
sections:

4.3.1. MONTE CARLO INTEGRATION

Above all this is by far the most accurate and also the most
expensive way to estimate the variance. Using approxima-
tion methods, we estimate the expectation:

V ar[y − ŷ | ŷ,x] =

∫
Ω

(y − E[y])2qθ(y − ŷ | y,x)dy

(16)

By sampling from qθ and taking the sum. To our knowledge,
this is the first time someone has used normalizing flows
with Monte Carlo estimation to derive variance estimates.
Yet nevertheless, we use this method as a kind of baseline
to compare our upper and lower bounds on the variance.

4.3.2. THE JENSEN’S INEQUALITY LOWER BOUND

For an original random variable

N ∼ N (µ,Σ)

the random variable of the flow output is Y = fθ(N). where
fθ is the parametric flow transformation.

In order to construct this lower bound, we rely on a simpli-
fying assumption. We assume that E[fθ(N)] which approx-
imates E[Y − Ŷ ] is equal to zero. While this assumption
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seems to be prohibitive, in most cases it’s a fair assumption
to make. For a regressor trained against MSE for exam-
ple, the optimum point is when the regressor is an unbiased
estimator of Y .

With that assumption we can rewrite the variance:

V ar[fθ(N) | ŷ, x] = E[fθ(N)2 | ŷ, x]− E[fθ(N) | ŷ, x]2

= E[fθ(N)2 | ŷ, x]

If fθ(N)2 is a convex function, we can apply Jensen’s in-
equality, and construct an analytic bound on the variance.

V ar[fθ(N) | ŷ, x] = E[fθ(N)2 | ŷ, x] (17)

≥ fθ(E[N ])2 (18)

≥ fθ(µ)2 (19)

In the following sections we will explain exactly how to
ensure that fθ(N)2 is convex in N .

4.3.3. CHERNOFF VARIANCE INEQUALITY UPPER
BOUND

We directly use Chen’s bound (Chen, 1982):

V ar[g(X1, . . . , Xn)] ≤
n∑
i=1

E[
∂

∂Xi
g(X1, . . . , Xn)]2

If the partial derivatives

∂

∂Xi
g(X1, . . . , Xn)

are concave, we can apply Jensen’s inequality.

V ar[g(X1, . . . , Xn)] ≤
n∑
i=1

∂

∂Xi
g(E[X1], . . . ,E[Xn])2

4.4. Constructing a Dense Convex Neural Network

Core to the upper and lower bounds we achieve is a con-
struction of the a convex dense neural network. For brevity,
we will provide a proof sketch showing that a feedforward
neural network with nonnegative kernel weights W (i)

W (i) ≥ 0

and relu activations is convex and nondecreasing.

First, let’s discuss the terminology: Our network is made up
of l layers. where the output of of the i’th layer:

ai = relu(W (i)ai−1 + b(i)) (20)

And the whole dense network is written as the vector valued
function

f(x) = [f1(x), f2(x) . . . fn(x)]T (21)

Thus when we say that the vector valued function is convex,
we mean each value fi(x) is convex with respect to it’s
input.

The proof follows inductively by layer. let a0 = x, note
that a0 is thus trivially convex since the identity function is
convex.

For the inductive case, we need to prove that ai is convex
and nondecreasing given that ai−1 is convex and nonde-
creasing.

Note that since,W (i)ai−1+b is convex it is affine, and since
we constrain the kernel weights w(i) to be nonnegative the
function is also nondecreasing. The outward relu operation
is convex, and is also nondecreasing in it’s input. Therefore,
it’s composition must also be convex and nondecreasing.

This shows inductively that for each i, fi(x) is convex and
nondecreasing. We can apply the same reasoning to con-
struct concave dense feedforward neural networks the only
difference being that we replace the activation function with

f(x) = min(0,−x)

W (i) ≤ 0

4.5. Constructing a Convex MAF

zi = ui ∗ αi + µi (22)

In the MAF we use dense convex neural networks, for αi
and µi. To show that the MAF is convex, in each dimension
it’s sufficient to show this is convex via induction.

The base case is simple:

z1 = u1 ∗ α1 + µ1 (23)

µ1 and α1 are not functions of the input. Therefore they are
affine and convex.

The inductive case then uses the fact that we know αi and
µi is convex. Since the addition of convex functions is still
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convex we simply need to show that the product ui ∗ αi
is still convex. This is not true generally, however if we
constrain ui to be positive then the result is true, since one
can write that operation as the composition of nondecreasing
convex function with a convex function.

4.6. Constructing a Convex RealNVP

The same technique of limiting the input X to be nonnega-
tive can be used to derive a convex RealNVP.

Recall the transformation (copied over here for ease):

z1:k = u1:k

zk+1:d = uk+1:d ∗ σ(u1:k) + µ(u1:k)

We use dense convex networks for σ and µ, so it is again
sufficient to show that uk+1:d ∗σ(u1:k) is convex. If uk+1:d

is nonnegative this operation is convex. For the same reason
constructing the convex MAF, we can write this product
term as a composition of nondecreasing convex functions
which we know constructs a convex function.

4.7. Concavity

For brevity, we’ll only provide a sketch of how to construct
the concave version of the MAF and RealNVP, since it
borrows many of the same techniques as the concavity proof
in the sections above. To make the functions concave, we
use the fact that a concave nonicreasing function composed
with a concave function results in a concave function. Thus
instead of enforcing the variables to be nonnegative we
constraint them to be nonpositive, while using the concave
dense network construction for the scale and shift networks.

5. Results
5.1. Experiment setup

A consequence of using autoregressive normalizing flow
techniques is that they depend on the target being multivari-
ate. We emulate a similar setup to (Lakshminarayanan et al.,
2017), which has a methodology comparable to ours for a
univariate target. We use the same regression datasets as
(Lakshminarayanan et al., 2017), but we create multivariate
datasets by adding some of the features to the set of target
dimensions. Specifically, we randomly sample bd/2c of the
feature dimensions to be target labels and let the remaining
d − bd/2c be the features to predict with, where d is the
dimensionality of the original dataset.

For each dataset, we randomly select 3 train/test splits where
each split is 90% of the original data is allocated for training,
and the remaining 10% is used for test.

5.2. Model specification

We use the same architecture for the regression model
throughout for all the methodologies: one hidden layer of
100 units with ReLu activations. We trained the model with
a learning rate of 0.001, a batch size of 16, for 40 epochs.

For the error prediction model, our model has an initial
hidden layer of 100 units, and 3 flow layers, with the flow
network for each flow layer being a single hidden layer
perceptron with 100 hidden units and softplus activation.
We train the flow model for 100 epochs, and also with a
learning rate of 0.001 and batch size of 16.

For the error prediction model, our model has an initial
hidden layer of 100 units, and 3 flow layers, with the flow
network for each flow layer being a single hidden layer
perceptron with 100 hidden units and softplus activation.
We train the flow model for 100 epochs, and also with a
learning rate of 0.001 and batch size of 16.For the error
prediction model, our model has an initial hidden layer of
100 units, and 3 flow layers, with the flow network for each
flow layer being a single hidden layer perceptron with 100
hidden units and softplus activation. We train the flow model
for 100 epochs, and also with a learning rate of 0.001 and
batch size of 16.

5.3. Analysis

5.3.1. ERROR PREDICTION PERFORMANCE

Overall in 1, the flow distributions achieve a higher log-
likelhiood then the Gaussian baseline on the multivariate
datasets. The Gaussian baseline, however, does do better
on some datasets. Notably, the datasets with lower overall
likelihood across all methods. This is consistent with the
motivation behind a flow error distribution being better at
characterizing more complex error distributions that are
inherently non-Gaussian. Notably, the highest likelihood
dataset naval-propulsion-plant has the highest likelihood
with the Gaussian model while the dataset with the lowest
likelihood across all methods, power-plant, has the highest
likelihood with RealNVP.

5.3.2. PERFORMANCE COMPARISON OF ADDING
CONVEXITY / CONCAVITY CONSTRAINT

As part of 3 we compare how a convex flow network com-
pares against the a concave flow network and the uncon-
strained flow network. This comparison is to show that
constraining the network to be concave or convex does not
hinder the inference performance of the network. The re-
sults in 3 support this hypothesis, the difference in variance
between the Monte Carlo integrations methods Concave
MC vs Convex MC, Normal MC is insignificant.
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5.3.3. TIGHTNESS OF UPPER BOUND AND LOWER
BOUND

3 also provides data on how tight upper bound and lower
bounds are compared to the baseline Normal MC. On aver-
age the lower bound is approximately 0.15 times the com-
pared to the normal MC, and the upper bound is roughly 4
times greater than the baseline normal MC. With some pre-
liminary results, we see that these bounds grow tighter with
more training time. For example, the lower bound hovers
around 0.2 and the upper bound at 1.4 when the model is
trained against the energy dataset.

6. Conclusion
Overall, we demonstrate that using normalizing flows to
parameterize the error distribution of a regression model
as a viable alternative to using simple Gaussian models to
accomplish the same task. Furthermore, we derived bounds
on the variance of the flow distribution and empirically
determined they can provide an analytic estimate of the
error distribution’s variance without having to incorporate
Monte Carlo integration. The theoretical bounds we derive
are dependent upon the convexity/concavity of the flow and
neural network functions, but we empirically that the even
given concavity and convexity constraints, the learned flow
distribution has similar statistics (e.g. variance) to flows
learned without this constraint.

6.1. Future Work

For future work, we suggest further investigation into what
specific distributions, or characteristics of specific distribu-
tion lead to better parameterization by normalizing flows.
We found various avenues of research that we could not
pursue due to time constraints.

6.1.1. GENERALIZING AWAY FROM GAUSSIANS

One of the most promising was generalizing the base layer
distribution past the Gaussian. The normalizing flow is
generally a transformation on a Gaussian random variable.
However, throughout the course of this research we only
used one property of the Gaussian to get these results. We
only used the fact that the Gaussian mean was analytically
derivable. Nearly, all well known distributions have an-
alytically derivable means. It’s therefore perhaps a very
interesting avenue of research to see if one can generalize
away from Gaussians.

6.1.2. BOUNDING THE COVARIANCE

As part of our contributions for this paper we had planned
on providing a bound not on the variance but on the covari-
ance. However, that attempt proved to be too ambitious.
Since the covariance can be seen as the product of two func-

tions in expectation, to show that the covariance could be
bounded by a Jensen-like bound we needed to prove some
kind of convexity result for general function products. We
quickly realized that when the range of the function is not
constrainted, such a convexity result is impossible. We even
came up with a sketch that it is impossible to show that the
covariance of a transformation is convex. As a result we
were unsure about how to proceed with the problem and
reverted to just using variance (instead of covariance).

6.1.3. FORMALLY BOUNDING THE TIGHTNESS

There has been a lot of work in providing bounds on the
Jensen’s gap which is the size

|E[g(x)]− g(E[x])| (24)

the gap is written as function of the moments of the expecta-
tion and the rate of change of g(x). In future work, it might
be a good avenue of research to see if we can apply these
existing bounds to the Jensen’s inequalities we use.
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Dataset baseline (Gaussian only) MAF RealNVP
concrete -8.033 ± 0.772 -5.695 ± 1.646 -7.056 ± 2.203

wine-quality-red -3.402 ± 0.173 -5.415 ± 1.359 -5.214 ± 0.230
energy -59.619 ± 23.635 -70.799 ± 32.325 -32.871 ± 5.624
kin8nm -4.219 ± 0.032 -5.344 ± 0.720 -6.099 ± 0.714

bostonHousing -9.416 ± 1.900 -14.570 ± 29.198 -8.307 ± 2.422
power-plant -0.258 ± 0.055 -0.888 ± 0.416 -1.008 ± 0.414

yacht -12.886 ± 2.671 -6.001 ± 1.865 -4.607 ± 0.872
naval-propulsion-plant -123.423 ± 44.940 -86.042 ± 54.039 -109.908 ± 19.575

Figure 1. Mean and standard deviation of negative log-likelihood of over the train/test splits for each dataset.

Figure 2. Bar plot of the negative log likelihood for each dataset, visualizing the above statistics.

Dataset Concave (upper bound) Concave MC Convex (lower bound) Convex MC Normal MC
concrete 2.643 0.498 0.078 0.469 0.499

wine-quality-red 4.162 0.559 0.152 0.609 0.565
energy 1.807 0.379 0.077 0.325 0.327
kin8nm 4.592 0.946 0.149 0.961 0.969

bostonHousing 3.395 0.459 0.064 0.492 0.479
power-plant 0.972 0.459 0.010 0.299 0.310

yacht 2.013 0.518 0.063 0.554 0.546

Figure 3. Comparisons of the upper bound, lower bound and the Monte Carlo integration variance and Monte Carlo integration variance
when we limit the transformation to be convex or concave
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