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Abstract
Open information extraction (OpenIE) is the task
of extracting open-domain assertions from natural
language sentences. However, the lack of anno-
tated data hurts the performance of current model
and made it barely satisfactory. In this paper, we
aim to improve the OpenIE model with the help
of the semantic role labeling (SRL) data, which
has a very similar goal of identifying predicate-
argument structure from natural language sen-
tences, but with more labeled instances available.
We propose a semi-supervised OpenIE model,
which jointly optimizes supervised loss and un-
supervised loss by treating OpenIE labels as hid-
den variables to reconstruct observed SRL labels.
Conditional variantional autoencoder (CVAE) is
used to optimize the lower bound of the data log-
likelihood. Different from traditional multitask or
transfer learning, we apply a more direct way to
exploit the correlation between OpenIE and SRL.
We compare our model with transfer and multi-
task learning, and the results corroborate that our
framework is able to better utilize such correlation
information.

1. Introduction
Open information extraction (OpenIE) (Banko et al., 2007a;
Fader et al., 2011; Mausam et al., 2012) aims to extract
structured information from unstructured natural language.
The target is usually in the form of a n-tuples, consisting
of a predicate, and several arguments. OpenIE is benefi-
cial to many downstream tasks, such as question answering,
text summarization, and knowledge base construction. Un-
like traditional IE where a small set of target relations are
provided in advance, Open information extraction aims at
extracting as many potential relations as possible in a text
based on the semantic information. In that way, it facilitates
the domain-independent discovery of relations extracted
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Figure 1. Illustration of correlation between OpenIE and SRL.

from text and scales to large, heterogeneous corpora.

However, manually creating training data for this task is
very expansive and time-consuming, because the same rela-
tion could be expressed in many ways in the text. Therefore,
distant supervision, hand-crafted rules and bootstrapping
(Mintz et al., 2009a; Pantel & Pennacchiotti, 2006) are heav-
ily used in this area due to their advantage of only requiring
no or a small amount of annotation data. However, these
methods usually make strong assumptions which yield low
data quality. Furthermore, some of manually defined rules
and patterns generalize poorly to the different datasets.

In this paper, we show another effective way to improve
OpenIE with non-annotated datasets by jointly learning with
semantic role labeling (SRL). Both OpenIE and SRL can be
formulated as a sequence tagging problem. In addition, SRL
contains very similar output to OpenIE as shown in Figure 1.
More importantly, the labels of SRL are relatively easy to
obtain. To better exploit such correlation information be-
tween the outputs of two tasks, we design a semi-supervised
learning framework based on the conditional variational au-
toencoder. We corroborate that our model can take better
advantage of the SRL information than traditional multitask
learning and transfer learning on this task. Our contributions
are listed as follows:

• We propose a semi-supervised OpenIE model, which
jointly optimizes supervised loss and unsupervised loss
by treating OpenIE labels as hidden variables to recon-
struct observed SRL labels.

• We propose using conditional variational autoencoder
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to optimize the lower bound of the data log-likelihood
and serveral parameter sharing techniques to enable
better representation learning and stablize the training.

• Experiments on benchmark dataset OIE2016 show that
our model performs the best, comparing to other trans-
fer learning and multitask learning models.

2. Background
2.1. Relation Extraction

With the explosion of data on the internet and the need to
extract useful and sophisticated information from the data,
the technology of Information Extraction (IE) and Infor-
mation Retrieval (IR) has become more and more popular
in NLP researches. In particular, relation extraction is an
important task in IE, where raw texts are taken as input data,
and the relations between entities are identified from those
sentences in an automatic manner.

Since the labeled data is expensive to produce and thus
limited in quantity, the supervised relation extraction suffers
from a lot of problems. Various unsupervised and semi-
supervised solutions are proposed.

In (Shinyama & Sekine, 2006), a pure unsupervised learning
algorithm was used to extract relations from text documents.
The algorithm employed a clustering algorithm for docu-
ments in which similar entities names appear, and then use
"basic patterns" to group entities that play the same role
together. In this way, the group entities entail the same
relation and all the relations are extracted automatically.
(Banko et al., 2007b) utilizes minimal data to extract rela-
tions from large corpus. In their TextRunner architecture, a
self-supervised learner was trained a small corpus of sam-
ples to distinguish whether a relation tuple is trustworthy or
not. Then, a single-pass extractor uses the learned classifies
to extract potential relations from large corpus. Relations
were obtained based on a redundancy-based assessor which
assigns confidence level to each potential relation.

Alternatively, (Mintz et al., 2009b) uses the relation informa-
tion in Freebase to provide distant supervision for relation
extraction to avoid the lack of labeled data. The distant
supervision method assumes that if two entities participate
in a relation, any sentences which contains both of the en-
tities are likely to express that relation. In the system by
(Mintz et al., 2009b), the relation entities were extracted
from Freebase and then matched to Wikipedia sentences. If
a sentence contains a pair of entities in a relation, the system
will extract features from that sentence. For example, (Vir-
ginia, Richmond) are both present in Richmond, the capital
of Virginia, then features from the sentence are extract as a
positive example for location-contains relation. Since any
sentence can give incorrect relation, a negative sampling
technique is used to train a multi-class logistic regression.

2.2. Semantic Role Labeling

In Natural Language Processing, Semantic Role Labeling is
the process that assigns labels to words or phrases, in order
to discover the predicate-argument structure of a sentence,
such as "Who did what to whom", "when" and "where".

The early approaches of SRL utilizes the full syntactic tree,
and the task has been usually divided into two phase proce-
dures consisting of recognition and labeling of arguments.
Various models had been applied to this two procedure
SRL task, such as probabilistic models(Gildea & Jurafsky,
2002), Max Entroy(Fleischman et al., 2003), generative
models(Thompson et al., 2003), etc.

Later approaches of the SRL systems(Carreras & Màrquez,
2005) try to reduce the dependencies on syntactic parsing
and use only the paritial syntactic information. This avoids
the use of full parser and external lexico-semantic knowlege
basis. Most of the systems are based on a SVM tagging
system, using IOB decisions on the chunk of sentences,
and exploring a various choices of partial syntactic features,
such as local information on contexts of words, internal
structure of candidate argument, properties of target verb
predicates, or the relation between the verb predicate and
the constituent under consideration.

Recently, (He et al., 2017b) proposed a method using deep
learning models to tag sentences with SRL labels without
any syntactic parsing, which is considered as a prerequisite
for all the previous works. Their model used 8 layers of Bi-
LSTM with highway connection, orthogonal initialization
and locked-dropout. They also used BIO, SRL and syntatic
constrain decoding to improve the quality of the final tag-
ging. The deep learning model improved the F1 accuracy
and is found to be excel at long-range depencies compared
with previous syntactic labeling methods. In our project,
we will use a very similar LSTM based encoder-decoder
architecture for tagging the SRL data, but we will extend
the base model to fit in a semi-supervised learning scheme.

2.3. Semi-supervised learning

Semi-supervised learning can be effective when labeled data
is limited or hard to obtain while the number of unlabeled
data is much richer. With the recent advance of deep learn-
ing, modeling the distribution of unlabeled data at scale
using neural based generative model is getting essential.
Variational Auto-Encoder (VAE) (Kingma & Welling, 2013)
is very successful in modeling data distribution and data
generation. However, vanilla VAE can not generate data
based on given context. Thus, Conditional VAE (Sohn et al.,
2015) was proposed to solve this problem, where the input
observations modulate the prior on Gaussian latent variables
that generate the outputs. That is, for given observation x, z
drawn from the prior distribution pθ(z|x), and the output y
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Figure 2. OpenIE as a sequence tagging problem.
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Figure 3. SRL as a sequence tagging problem.

is generated from the distribution pθ(y|x, z).

In our setting, the unlabeled data can also have labels of
another task different from OpenIE, such as SRL. Then
we have two kinds of dataset which are target dataset
〈Xt,Yt〉 and auxiliary dataset 〈Xa,Ya〉 respectively. Trans-
fer Learning (TL) (Pan & Yang, 2010) or Multi-Task Learn-
ing (MTL) (Caruana, 1997) can be used to solve this kind
of problem. In TL, we usually train a model using auxiliary
dataset and replace certain layers with new layers adopted
to the target task, then only utilize target dataset to train
the new layers while keep the parameters of other layers
fixed. MTL jointly train different models for different tasks,
and share some parameters or latent feature to constrain
the model. MTL is popular in NLP (Collobert et al., 2011;
Zhang & Weiss, 2016; Swayamdipta et al., 2017; Strubell
et al., 2018; Yang et al., 2018). For example, LISA (Strubell
et al., 2018) combines multi-head self-attention with multi-
task learning across dependency parsing, part-of-speech
tagging, predicate detection and SRL. However, the differ-
ent tasks share the same X in their setting. while in our
paper, there’s much less overlapping between SRL dataset
and OpenIE dataset. What’s more, our model is more ex-
pressive due to the probabilistic latent variable while LISA
is totally deterministic.

3. Methods
In this section, we explain our methods to train a semi-
supervised OpenIE model with the help of additional SRL
data. From the previous section, OpenIE and SRL tasks
share a lot things in common, i.e they share a similar tag
space, and they have correspondences among the different
tags. To improve the performance of OpenIE model by uti-
lizing large SRL datasets, we treat the OpenIE tag sequences
as hidden variables, and decode the SRL labels based on that
hidden representations. Specifically, we use a conditional
variational autoencoder (CVAE) as the OpenIE model. In
the following parts, we first formulate the semi-supervised
problem; then introduce our proposed models; in the end,
we discuss the model implementation in practice.

3.1. Problem formulation

Two data sources are available in our task: a small dataset
with OpenIE annotations 〈Xoie,Yoie〉, and a large dataset
with SRL annotations 〈Xsrl,Ysrl〉. Xoie and Xsrl are two sets
of sentences with minimal or no overlap. In our case, among
these two datasets, there is a small amount of parallel data,
i.e. sentences with both SRL annotations and OpenIE an-
notations. Each sentence X contains a sequence of words
{w1, w2, . . . , wn}. For notation brevity, we omit the index
and just use X to denote a sentence either from the OpenIE
dataset or the SRL dataset. Yoie contains the corresponding
OIE labels for each sentence in Xoie, and Ysrl contains the
corresponding SRL labels for each sentence in Xsrl. Al-
though the ultimate goal of OpenIE and SRL is to extract
predicate-argument structure, we can formulate both prob-
lems as a sequence tagging problem (Stanovsky et al., 2018;
Jia et al., 2018; He et al., 2017a).

Specifically, given a sentence X = (w1, w2, ..., wn), the
goal of OpenIE and SRL is to extract n-tuples r =
(p,a1,a2, ...,am), composed of a single predicate p and
several “arguments”. We assume all components in r are
contiguous spans of words and there is no overlap between
them. The major different between OpenIE and RL is in the
definition of “arguments”. In OpenIE, arguments are just
components in the sentences that are related to the predicate.
For example, in Figure 2, we have two arguments: ARG0
that specifies the subject of the predicate likes and ARG1
that specifies the object of the predicate. In SRL, the case be-
comes a little complex. A predefined set of roles are used to
explicitly represent the relation between each argument and
the predicate. A SRL example is shown in Figure 3, where
ARGM-TMP is a role indicating the temporal information of
the predicate. As a result, we can interpret SRL as a more
fine-grained predicate-argument structure identification task.
However, it’s worth to mention that there is no trivial map-
ping between two tag spaces. Instead, the correspondence
usually also depends on the other factors such as semantic
information and the context of the sequence.

Within this framework, a tuple r can be mapped to a
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unique BIO (Stanovsky et al., 2018; He et al., 2017a) la-
bel sequence Y = (y1, y2, ..., yn) by assigning O to the
words not contained in r, B-V/I-V to the words in p, and
B-ARGi/I-ARGi or other roles to the words in ai respec-
tively, depending on whether the word is at the beginning
or inside of the span. We use Yoie to denote a OIE label se-
quence and Ysrl to denote a SRL label sequence. Note that
the OpenIE and SRL datasets have different tag spaces, i.e.,
{yi|yi ∈ Yoie,Yoie ∈ Yoie} 6= {yi|yi ∈ Ysrl,Ysrl ∈ Ysrl}.

Given a sentence X, the ultimate goal is to improve the Ope-
nIE model p(Yoie|X) using both OIE dataset 〈Xoie,Yoie〉
and SRL dataset 〈Xsrl,Ysrl〉.

3.2. Semi-supervised learning with conditional VAE

Given a sentence, we want to predict OpenIE tag sequence
using pθ(Yoie|X), where θ represents the parameters of the
model. Under supervised learning setting, one can directly
optimize this model on the OpenIE dataset 〈Xoie,Yoie〉. This
can be achieved by minimizing the negative log-likelihood
using the ground truth OpenIE tags:

Lsup = − log pθ(Y
oie|X).

However, this dataset is very limited. As a result, the model
can easily overfit this dataset and has poor generalization
ability to the other practical datasets. Therefore, we propose
to combine this supervised learning objective function with
another unsupervised learning objective function from the
SRL dataset. Considering the fact that the SRL task is very
similar to the OpenIE task with respect to the resulting tag
sequence, we can explicitly leverage SRL annotations to pro-
vide supervisions for OpenIE task, which can be achieved
by a conditional variantional antuencoder (CVAE) model.

Generative Story In unsupervised learning, given a input
sentence X, we treat the OpenIE tag sequences Yoie as
hidden variables, which are then used to reconstruct the
SRL labels Ysrl. The basic rationale behind this is that only
the proper OpenIE tag sequences are useful to reconstruct
the SRL tag sequences due to the correspondence between
them. The plate notation of our graphical model is shown in
Figure 4. The generative model is:

p(Ysrl|X) =
∑
Yoie

pθ(Y
oie|X)pω(Y

srl|X,Yoie), (1)

where θ is the parameter of the OpenIE model and ω is
the parameter of the reconstruction model (i.e., decoder),
which predicts SRL tags conditioned on both sentence X
and OpenIE tags Yoie.

Learning with conditional VAE Due to the large space
of the hidden variables Yoie, it is intractable to exactly com-
pute the marginal distribution in Equation 3.2. To mitigate

 X 𝑌𝑜𝑖𝑒  𝑌𝑠𝑟𝑙  

𝜑 𝜔 

𝜃 

𝑁 

Figure 4. The plate notation of our conditional VAE. The solid
lines represent prior model pθ(Yoie|X) and reconstruction model
(decoder) pω(Ysrl|Yoie,X) respectively. And the dashed line rep-
resents the variational approximation (encoder) qφ(Yoie|Ysrl,X)
to the intractable posterior distribution.

this problem, we introduce a variational posterior distribu-
tion, i.e., the encoder qφ(Yoie|Ysrl,X), to approximate the
true posterior distribution.

Instead of directly maximizing the marginal distribution
which is intractable, we maximize the evidence lower bound
objective (ELBO). After sampling some OpenIE tag se-
quences from the distribution implied by the encoder, the
decoder aims to reconstruct the SRL tag seqeuces based on
both the sentence and these OIE tag samples. In fact, only
using the OpenIE tags may not be sufficient to reconstruct
SRL tags because SRL contains more information than OIE.

The unsupervised loss defined as the negative ELBO is:

ELBO =EYoie∼qφ [log pω(Y
srl|Yoie,X)] (2)

− KL[qφ(Yoie|Ysrl,X)||pθ(Yoie|X)], (3)

which includes three components:

• encoder (posterior model): qφ(Yoie|Ysrl,X), which
approximate the real posterior distribution.

• decoder (reconstruction model): pω(Y
srl|Yoie,X),

which reconstructs SRL tags conditioned on both the
sentence and the OpenIE tags.

• prior (OpenIE model): pθ(Yoie|X), which is our targe
model that we are eventually interested in.

Based on our assumption that only the correctly predicted
OpenIE tag sequences are useful to reconstruct the SRL
tag sequences due to the correspondence, maximizing the
reconstruction loss in Equation 3.2 allows the model to learn
a better posterior distribution of the OpenIE tag sequences.
Consequently, the posterior model is expected to be more
powerful than the prior model due to the extra guidance
provided by the SRL labels. Simultaneously, by minimizing
the KL distance between the posterior and prior distribution,
the prior model is optimized to follow the steps led by the
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Figure 5. Illustration of our conditional VAE model. The solid
lines represent the forward direction and the double line represents
the sampling operation. The dashed lines represent the loss compu-
tation. The parameters in the red blocks are shared across different
modules while the parameters in the blue block are model-specific.

posterior distribution. In addition, we don’t want the prior
distribution to move too far from the original prediction, so
we also minimize the supervised loss in the meanwhile. The
KL distance also constrains the solution space searched by
the posterior model to be valid OpenIE tag sequence space.

Semi-supervised Learning The overall semi-supervised
learning loss function is:

L = Lsup + λ · Lunsup = Lsup − λ · ELBO,

where we use λ to control the tradeoffs between supervised
loss and unsupervised loss. During the training, the model
parameters θ, φ, and ω are optimized jointly.

3.3. Model implementation

In this section, we will elaborate more about the im-
plementation of our model in the setting of using neu-
ral networks. The framework of our semi-CVAE model
for semi-supervised learning is illustrated in the Fig-
ure 5. As stated above, there are three components:
encoder qφ(Yoie|Ysrl,X), decoder pω(Ysrl|Yoie,X), and
prior model pθ(Yoie|X). Since all of these three compo-
nents are conditioned on X, they can share the parameters
used in modeling X to reduce the training difficulty and risk
of overfitting. As a result, each component is implemented
with two modules: the base module (red blocks in Figure 5)
and the specific module (blue blocks in Figure 5). Note that
the base module is shared across three components. Since
we are dealing with sequence labeling tasks, we use BiL-
STM (Graves et al., 2013) as our building block. We will
introduce the detail of each components in the the following

Algorithm 1 Batch Gradient Descent for Conditional Vari-
antional Auto-Encoder
input :SRL pairs 〈X srl,Y srl〉 and OpenIE pairs 〈X oie,Yoie〉

as minibatch with size B
θ, φ, ω ← Initialize parameters
repeat

compute pθ(Yoie|Xoie), qφ(Yoie|Xsrl,Ysrl)

Ŷoie,(i) ← Sample N fake OpenIE tag sequences
from posterior distribution qφ(Yoie|Xsrl,Ysrl)

Lr ← −
∑
B

∑N
i=1 log

(
pω(Y

srl|Ŷoie,(i))
)

(Recon-
struction loss)
gφ,ω,θ ← ∇φ,ω(Lr + KL [pθ||qφ]) (Gradients of
minibatch negative ELBO)
φ, ω, θ ← Update encoder and decoder using Gumbel
Softmax or REINFORCE with gφ,ω,θ
Ls ←−

∑
B log

(
pθ(Y

oie|Xoie)
)

(Supervised loss)
gθ ← ∇θLs
θ ← Update prior using gradient gθ

until convergence of parameters (θ, φ, ω);

sections.

BiLSTM Building Block We use stacked BiLSTM with
highway connections (Zhang et al., 2016; Srivastava et al.,
2015) and recurrent dropout (Gal & Ghahramani, 2016) as
our building blocks. All of the base module and specific
modules are implemented using this architecture. Depend-
ing on the input of the module, we have three concrete
instantiations:

• If the module takes X as inputs, the input embedding
is the concatenation of word embedding and another
embedding indicating whether this word is predicate:

xt = [Wemb(wt),Wmask(wt = v)],

and the resulted module is denoted as BiLSTMx

• If the module takes Y (either Yoie or Ysrl) as inputs,
the input embedding is the of tag embedding:

xt = Wtag(yt),

and the resulted module is denoted as BiLSTMy

• If the module builds upon other modules, the input is
the hidden state of previous layer:

xt = ht,

and the resulted module is denoted as BiLSTMh
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Figure 6. Correlation matrix between OpenIE and SRL labels. The red regions represent a larger normalized frequency of the co-occurrence
between the corresponding OpenIE labels and SRL labels. The blue regions represent no co-occurrence in the parallel data.

Three Components Implementation Using the building
blocks introduce above, we can build encoder, decoder, and
prior by stacking based module and specific modules:

• encoder: BiLSTMx + BiLSTMysrl → BiLSTMhoie .

X and Ysrl is modeled by BiLSTMx and BiLSTMysrl

respectively, and their hidden state on last layer is
added and fed to BiLSTMyoie to make OpenIE tag pre-
dictions.

• decoder: BiLSTMx + BiLSTMyoie → BiLSTMhsrl .

X and Yoie is modeled by BiLSTMx and BiLSTMyoie

respectively, and their hidden state on last layer is
added and fed to BiLSTMysrl to make SRL tag pre-
dictions.

• prior: BiLSTMx → BiLSTMhoie .

X is modeled by BiLSTMx, and its hidden state on last
layer is fed to BiLSTMyoie to make OIE tag predictions.

The probability of the label at each position is calculated
independently using a softmax function. At decoding time,
we use the Viterbi algorithm to reject invalid label transitions
(He et al., 2017a), such as B-ARG0 followed by I-ARG1.

Parameter Sharing in Semi-CVAE The base module
BiLSTMx takes sentence X as inputs and is a 4-layer
stacked BiLSTM, whose parameters are shared in three com-
ponents. BiLSTMyoie and BiLSTMysrl takes tag sequence as
inputs and is a 2-layer stacked BiLSTM. BiLSTMhoie and
BiLSTMhsrl takes previous hidden state as inputs and is a
1-layer BiLSTM. Parameters for the specific modules are
not shared.

To avoid collapsing in decoder, which means that the de-
coder only use X to reconstruct SRL, instead of direct ag-
gregation, we add a parameter µ to control the proportion

Train Dev. Test

# sentence 1 688 560 641
# extraction 3 040 971 1 729

Table 1. Statistics of the OpenIE Dataset.

between BiLSTMx and BiLSTMyoie in the merged informa-
tion:

µ · BiLSTMx + (1− µ) · BiLSTMyoie

In practice, this is equivalent to adding dropout on the sen-
tence information.

Optimization with Discrete Variables A basic approach
to compute the stochastic gradients is shown in algo-
rithm 1. The training process of our model is very similar to
VAE (Kingma & Welling, 2013) but has several differences:

• Since the prior distribution is also a conditional dis-
tribution formulated by neural nets, we also need to
calculate the gradients to update the prior model.

• Since the posterior distribution is discrete in our set-
ting, the gradients are not able to be backpropogated
properly. Either Gumbel Softmax (Jang et al., 2016) or
REINFORCE (Miao & Blunsom, 2016) can be used to
circumvent this issue. To be specific, we gradually de-
crease the temperature in Gumbel Softmax to stablize
the training. For REINFORCE, we use average reward
as baseline to reduce the gradient variance.

• The KL distance between the prior and posterior distri-
bution can be calculated directly instead of sampling
since both distributions are sequences of independent
categorical distribution.
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Figure 7. Overall performance on span-based metrics.

4. Experiments
4.1. Experimental Settings

Dataset We use the OIE2016 dataset (Stanovsky & Da-
gan, 2016) to evaluate our method, which only contains
verbal predicates. OIE2016 is automatically generated from
the QA-SRL dataset (He et al., 2015), and to remove noise,
we remove extractions without predicates, with less than
two arguments, and with multiple instances of an argu-
ment. The statistics of the resulting dataset are summa-
rized in Table 1. The PropBank-style, span-based SRL
datasets: CoNLL-2012 (Pradhan et al., 2013) is used for
semi-supervised learning. It provides gold predicates and
their index in the sentence as part of the input. We follow
the train-development-test split used in official evaluation.
A quick look at the correlation between OpenIE and SRL
labels are shown in Figure 6.

Evaluation Metrics We follow the evaluation metrics de-
scribed by (Stanovsky & Dagan, 2016): area under the
precision-recall curve (AUC) and F1 score. Note that this
evaluation metric is very challenging. An extraction is
judged as correct only if the predicate and all the arguments
include the syntactic head of the gold standard counterparts,
which is hard considering that lots of extractions in OIE2016
contain multiple arguments. For example, if an extraction
contains three arguments, two of them are correctly iden-
tified and one is missing, the system still gets zero credit.
Considering the fact that OpenIE is similar to SRL and to
better measure incremental progress, we also report the stan-
dard evaluation metrics used for SRL systems: span-based
precision, recall, and F1 measure.

Implementation Details The build block of our semi-
CVAE model is a stacked BiLSTM. The network consists
of 4+1 BiLSTM layers with 300-dimensional hidden units.
ELMo (Peters et al., 2018) is used to map words into con-
textualized embeddings, which are concatenated with a 100-
dimensional predicate indicator embedding. The recurrent
dropout probability is set to 0.1. Adadelta (Zeiler, 2012)

AUC F1
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Figure 8. Overall performance on metrics proposed by (Stanovsky
& Dagan, 2016).

overgenerated wrong missing
predicate argument argument

41% 38% 21%

Table 2. Proportions of three errors.

with ε = 10−6 and ρ = 0.95 and mini-batches of size 80
are used to optimize the parameters. We sample 5 OIE tag
sequences in ELBO estimation. The weight of unsupervised
loss is set to 0.3. Our implementation is based on AllenNLP
(Gardner et al., 2018).1

Baselines We compare our method with three baselines:

• Base Model The standard BiLSTM sequence tagging
model trained on OpenIE dataset from scratch.

• Transfer Model We pretrain all of the parameters of
the BiLSTM sequence tagging model except for the tag
prediction layer using SRL datasets. Then we use this
pretrained weights to initialize the training on OpenIE
datasets.

• Multitask Model Both the SRL model and the OpenIE
model are trained simultaneously by sharing the lower
layers, which can learn a general representation by
hard parameter sharing.

4.2. Experimental Results

The span-based evaluation metrics are displayed in Figure 7,
and AUC and F1 measure are reported in Figure 8.

(1) Overall, semi-CVAE achieves best performance across
all of the span-based metrics, demonstrating the effective-
ness of semi-supervised learning. Unsupervised learning on
SRL datasets combined with supervised learning on OpenIE

1https://allennlp.org/models#
open-information-extraction

https://allennlp.org/models#open-information-extraction
https://allennlp.org/models#open-information-extraction
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A CEN forms an important but small part of a Local Strategic Partnership .

A Democrat , he became the youngest mayor in Pittsburgh’s history in September 2006 at the age of 26 .

An animal that cares for its young but shows no other sociality traits is said to be “ subsocial” .

Table 3. Case study of extractions. Green for arguments and red for predicates.

datasets can successfully explore the correlation between
SRL tag sequence and OpenIE tag sequence, leading to
better representation learning.

(2) Transfer model, multitask model, and semi-CVAE
model all significantly improve the performance over base
model, which indicates that using SRL dataset to enhance
OpenIE model is beneficial. Both SRL and OpenIE aims to
identify predicate-argument structure from natural language
sentences, and this similarity can be explicitly leveraged to
do transfer learning and multitask learning.

(3) The improvement of semi-CVAE model over trans-
fer model and multitask model can be explained from the
graphical model in Figure 4. Given X, Yoie and Ysrl are not
independent, which means that SRL (Ysrl) prediction accu-
racy could be further improved by conditioning on OpenIE
tags (Yoie). This is the core assumption of our model: better
OpenIE tags lead to better SRL tags reconstruction. Further-
more, if we take a closer at our processed model in Figure 5,
we can see a clear connection between semi-CVAE model
and multitask model: if we set the trade-off parameter µ in
decoder as 1, or unfortunately the decoder fail to use any
information from OpenIE labels, the encoder will only be
updated to mimic the prior model and they become almost
identical. As a consequence, our model degenerates to mul-
titask learning where the decoder is fully conditional on the
sentence and thus becomes a standard SRL model. It shows
that multitask learning is a special case of our proposed
semi-CVAE model, and provides an explanation on why our
model is superior to transfer and multitask learning from
another perspective.

5. Case Study and Error Analysis
Table 3 showcase some extractions generated by our system.
We can see that SRL are very similar to OpenIE. Argu-
ments in OpenIE usually corresponds to arguments in SRL.
Note that there are approximately 1000 sentences annotated
with both SRL and OpenIE tag sequence. We analyze this
parallel dataset by visualizing the correspondence between
OpenIE labels and SRL labels in Figure 6, which is a point-
wise mutual information matrix. We can see a clear pattern
of the correspondences among different labels indicated

by the red regions. To be specific, given SRL labels of
the input sentence, the distribution of OpenIE labels are
restricted in some certain spaces. Furthermore, there is not
a straightforward mapping among the labels, which means
complex model such as neural nets are necessary to solve
the ambiguity.

To better understand the relatively low performance in this
task, we randomly sample 50 extractions generated by our
model and conduct an error analysis to answer this question.
To count as a correct extraction, the number and order of
the arguments should be exactly the same as the ground
truth and syntactic heads must be included, which is chal-
lenging considering that the open IE datasets have complex
syntactic structures and multiple arguments per predicate.
We classify the errors into three categories, as shown in Ta-
ble 2: (1) “Overgenerated predicate” is where predicates not
included in ground truth are overgenerated, because all the
verbs are used as candidate predicates. An effective mech-
anism should be designed to reject useless candidates. (2)
“Wrong argument” is where extracted arguments do not coin-
cide with ground truth, which is mainly caused by merging
multiple arguments in ground truth into one. (3) “Missing
argument” is where the model fails to recognize arguments.
These two errors usually happen when the structure of the
sentence is complicated and coreference is involved.

6. Conclusion and Future Work
Open domain information extraction is increasingly impor-
tant as a result of the growing demand of extracting struc-
tured data from tremendous unconstrained data. However,
the poor quality due to the limited number of labeled data
has prevented current model from being used in the real set-
tings. We proposed to improve the performance of OpenIE
model with the data of SRL. Considering the connection
between the property of the two tasks, we propose a semi-
supervised learning framework based on the conditional
VAE. The performance of our model compared with the
baseline models attests that our assumption that the pro-
posed semi-supervised setting can take advantage of the
additional correlation information. Furthermore, our model
provides a new idea on dealing with multitask learning
which could be potentially extended to other problems with
similar settings.
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