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Abstract

We develop novel generative methods for lan-
guage modeling that leverage graphical structure
instead of traditional, strict left-to-right genera-
tion. Language generation is viewed as a top-
down process through a parse tree. Our models
are applicable to language modeling and represen-
tation as well as neural language parsing. We also
propose a novel distribution for language model-
ing that enables these models. We both experi-
ment with methods using supervised parse trees
and methods that infer the most useful parse tree
in an unsupervised manner.

1. Introduction
A language model is a probability distribution over a se-
quence of words. A language model is different than a
Gaussian, for example, because it is a distribution over a
discrete sequence of unknown length. Language models
provide a way of representing the distribution of language,
and can be used for language generation or any other task
where language is an input or output.

In this project, we explore language modeling and gener-
ation using probabilistic graphical models. We treat the
generation of language as a recurrent process, whereby the
content is generated through a hierarchy of phrases. We
treat each phrase as independent of other phrases, given its
parent phrase and its children. We model language as a
structured tree, where the leaves are observed words, and
internal nodes are higher-level organization such as phrases
and clauses. For a graphical representation of this generative
story, see Figure 3.

As an idealized example, we decide the topic of a sentence.
From the topic, we draw representations of the noun, verb
and object phrases. A concrete noun is drawn from the noun
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Figure 1. Generative Story : Top-level sentence topic is drawn
and recurrently expands into a complete sentence, e.g., noun phrase
expands into some number of adjectives and a noun.

phrase representation, and some adjectives may be drawn
based on the noun.

Our model contrasts with traditional language modeling
performed in a left-to-right manner using a recurrent for-
mulation. Each word is drawn based on the previous words
using a network such as an LSTM. Our project attempts
to break this mold by utilizing graph-based methods that
do not require strict left-to-right generation and are instead
top-down. Our models are recursive rather than simply
recurrent.

We enable our model by proposing a novel distribution
for language modeling. Our distribution allows a greater
freedom of structure than traditional left-to-right language
modeling, which we use to explore incorporating graphical
model structure into language modeling.

Our contributions:

• We introduce CTC mixture models to approximate
distributions over a sequence of tokens of unknown but
bounded length

• We introduce a tree-based graphical model for lan-
guage modeling

• We show how CTC mixture models can be used to
derive unknown graphical structures in languages.

• We provide results applying our tree-structured lan-
guage model to language generation



Submission and Formatting Instructions for ICML 2019

Figure 2. Model Overview: [We describe all the components of our proposed model –SD]

2. Background and Related Work
2.1. Graph Structure Inference

Research has shown that tree structures are powerful tools
for language, especially in the realm of sentiment analysis
(Kokkinos & Potamianos, 2017). Although simple left-to-
right models work well enough for many tasks, tree struc-
tured models appear to handle some linguistic issues such
as negation better. Intuitively, negation takes a phrase and
inverts its meaning, which is easily modeled if phrases and
sub-phrases are represented in a tree.

2.2. Language Syntax Trees

2.2.1. DEPENDENCY PARSE TREES

A dependency parse represents the relationships in a sen-
tence by words linked to ”head” words that they modify. An
exemplary dependency parse is shown in Figure 3.

Figure 3. Example dependency parse https://nlp.
stanford.edu/software/nndep.html

A common method for producing dependency parses is to
control a transition-based parser using a neural network
(Chen & Manning, 2014; Yang et al., 2017; Kiperwasser &
Goldberg, 2016). A transition-based parser incrementally
builds a dependency parse by making decisions about push-
ing to a stack, making an arc, and other operations until it
reaches a goal state. The specifics of those operations are
what makes each transition-based parser unique. A greedy
approach to selecting operations is common but a beam
search is also possible.

In our work, we use Stanford NLP as a reference dependency
parser, for providing supervision or for comparison to our
methods (Manning et al., 2014).

2.2.2. CONSTITUENCY PARSE TREES

A constituency parse tree breaks the sentence into it’s con-
stituents or sub-phrases. The tree structure has a root node
which has sub-branches corresponding to different compo-
nents constituting the syntax of the sentence and the leaf
nodes are the words of the sentences. An exemplary con-
stituency parse tree is shown in Figure 4.

Figure 4. Example Constituency Parse Trees (Charniak)

A typical way to dependency parsing is to serialize the build
the tree using recurrent neural network grammars (Kuncoro
et al., 2016) where instead of predicting the tree structure
the model learns to predict serialized stack operations that
will lead to the tree. This is typically how a FST grammer is
decoded by a computer. There have also been a lot of recent
work on parse trees which consider the tree as a lexicalized
context free grammar. Which means that every node of the
tree is associated with one of the words in the leaf node,
allowing us to build an attention type hirerichial encoder.
(Charniak et al., 2016; Kitaev & Klein, 2018; Fried et al.,
2017)

2.3. Graph Structure Inference

2.3.1. LEARNING BAYESIAN NETWORKS

A unique method of parameterizing DAGs is presented in
(Zheng et al., 2018). This provides a differentiable method
of learning and parameterizing a DAG for a single prob-

https://nlp.stanford.edu/software/nndep.html
https://nlp.stanford.edu/software/nndep.html
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lem. As dependency parses can be represented as DAGs, it
would be valuable to combine the NOTEARS method with
language modeling to infer hidden structures.

2.3.2. LEARNING OVERCOMPLETE GRAPHS

One fantastic work presented in (Graves et al., 2006) gave
a unique way of learning alignments between two spaces us-
ing the connectionist temporal loss (CTC). A model trained
with CTC loss is a sequence based model which automati-
cally learns alignment between input and output by introduc-
ing an additional label called the blank symbol (∅), which
corresponds to ‘no output’ prediction. Given a sequence of
acoustic features X = (x1, . . . ,xn) with the label sequence
z = (z1, . . . , zu), the model tries to maximize the likeli-
hood of all possible CTC paths p = (p1, . . . ,pn) which
lead to the correct label sequence z after reduction. A re-
duced CTC path is obtained by grouping the duplicates and
removing the ∅ (e.g. B(AA∅AABBC) = AABC).

P (z|X) =
∑

p∈CTC Path(z)

P (p|X)

This is a non-autoregressive top-down approach with the
power of handling “non-important” input frames. We would
like to use this in our task by creating an overcomplete
flat representation and using the CTC loss function to do a
top-down language modeling. We believe this would have
some robust features like handling noises by learning a
higher order dependency between word sequences than just
sequential dependency learned by LSTMs.

A similar idea was also done in a recent paper that attempts
to train a speech recognition system without any labeled
data (Yeh et al., 2018). The insight is that the distribution
of phonemes output by the speech recognizer should match
the language model. An ASR system can be trained on
unlabeled speech by maximizing the likelihood of the ASR
output under a language model. This model is however
limited by requiring phoneme segmentations for the ASR
component. A separate model estimates phoneme bound-
aries. A method similar to EM is used to alternate between
training the two models.

Overcomplete representation learning is well studied in the
cases where the input size is much larger than output, for
example sound waveforms, spectrograms etc. Techniques
like dictionary learning and sparse coding have been used
to learn representations for speech (Sivaram et al., 2010;
Vinyals & Deng, 2012; Sainath et al., 2011) and audio sig-
nals (Plumbley et al., 2010).

2.4. Generative Modeling

We use two types of generative models in our experiments,
Variational Autoencoders (VAEs) and Adversarial Autoen-
coders (AAEs). Both models have two main components:

• The encoder produces a latent representation from in-
puts

• The decoder predicts inputs from a latent representa-
tion

The latent representations are regularized such that their
marginal distribution is a known prior, such as a Gaussian.
We are then able to pass Gaussian samples to the decoder to
produce samples from the same distribution as our data.

We experimented with four types of models, summarized in
Figure 2. These models are listed in order of both expressive
power and feasibility to evaluate.

• Autoencoders use a deterministic encoder and decoder.
These models do not provide the ability to generate
samples but are fast to train and useful for finding
initial hyperparameters.

• Variational Autoencoders use a stochastic encoder us-
ing the reparameterization trick. These models can
generate samples and easily calculate likelihood. How-
ever, the lower bound that is optimized causes “blurry”
results.

• Adversarial Autoencoders using a stochastic encoder
using the reparameterization trick. These models can
generate samples. Results are sharped due to optimiz-
ing an approximation instead of a bound. Conditional
distributions are Gaussian. It is somewhat reasonable
to calculate likelihood.

• Adversarial Autoencoders using stochastic functions.
The conditional distribution for each encoding is not
constrained to be Gaussian, so it is more difficult to
evaluate likelihood.

2.4.1. VARIATIONAL AUTOENCODERS (VAES)

Autoencoding variational Bayes utilizes a variational lower
bound on the divergence between the latent representations
and the prior to encourage the latent representations to match
the prior (Kingma & Welling, 2013). Using the reparameter-
ization trick, this model can be trained easily with gradient
descent. However, due to utilizing a variational lower bound,
results from this model are known to be “blurry”.

2.4.2. ADVERSARIAL AUTOENCODERS (AAES)

Adversarial Autoencoders utilize an adversary to ensure
that the marginal distribution of encodings matches a prior
(Makhzani et al., 2015). A discriminator evaluates samples
from a prior and compares them to samples from the latent
representation and tries to tell the difference. This model is
similar in many respects to a Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014) but differs in key
aspects:
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• AAEs train encoders and decoders but a GAN trains
just a decoder

• AAE discriminator works on latent space but GAN
discriminator works on input space. If input space is
discrete but latent space is continuous, GAN discrim-
instator is not differentiable but AAE discriminator is
differentiable.

We utilize the Wasserstein GAN objective to stabilize ad-
versarial training (Arjovsky et al., 2017). We also utilize
spectral normalization to constrain the Lipschitz constant of
the discriminator (Miyato et al., 2018).

2.5. Language Modeling

There has been a lot of work on neural language models,
these is particularly useful in natural language generation
tasks and auxiliary tasks such as speech recognition, ma-
chine translation etc. Most of the language modeling tasks
assume the language generation story to be left to right,
which they model it using an LSTM (Hochreiter & Schmid-
huber, 1997; Mikolov & Zweig, 2012; Joulin et al., 2016).
Though this works reasonably well in terms of the perplexity.
It has a few drawbacks -

• Humans don’t really think of sentence generation in
the same fashion.

• It is slow as the first word needs to be generated to
produce the next.

Recently with transformer based models (Vaswani et al.,
2017) there has been a growing interest of flat models which
are non-autoregressive. This has led to research into “flat
language models”. OpenAI GPT (Radford et al., 2019) uses
a flat encoder but uses a set of previous attentions to generate
the words.

Google recently solved the problem of flat generation by
introducing a new technique called the masked language
model approach (Devlin et al., 2018), which basically rec-
ognizes the mask given the rest of the sentence. Though this
is good for classification tasks in terms of generation this
doesn’t really work. To do the generation task in this model
we would have to first start with a sentence with all masks
and then do some kind of variational inference or greedy
sampling to produce words. This makes the approach ex-
tremely slow during inference.

There has also been some work on making tree based
LSTMs (Dyer et al., 2015) which try to model the hierarchi-
cal structure of the sentence using LSTMs. But these are
quite slow and have not been shown for language generation
tasks.

Our model attempts to solve both these issues by learning a
DAG and using that encoding and decode this over-complete
representation using CTC loss function.

3. Models and Methods
Figure 5 summarizes our two proposed architechture along
with the standard unidirectional LSTM based language
model.

Figure 6. Various Generative Models: We utilized several mod-
els with differing levels of complexity and expressive power

3.1. Standard LSTM based LM

The most standard way to model language and generate
language is by using a unidirectional LSTM which takes
words as input from left to right and at each step predicts
the next word given the already seen words in the past.

Standard LSTM LM model has a lot of disadvantages that
we try to fix in our model -

• The model doesn’t fully exploit the bi-directional ca-
pabilities of the LSTMs as using the bidirectional in-
formation will make the model prediction trivial and
the model won’t learn any useful information.

• The model generates words left to right which tends
to be less robust towards errors. As the error would
simply propagate till the end of the sentence if the
model receives a word which it has not seen before.

• These models tend to prefer shorter sentences because
of vanishing gradients problem.
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Figure 5. Various Language Modeling Architectures: Traditional language model at left. Our encoder uses a BiLSTM at top. We
experimented with both flat and tree-structured decoders.

3.2. Representation of Sentence Length

One of the most important differences between CTC mixture
models and traditional models is in regards to the represen-
tation of sentence length.

• Traditional models emit tokens until a special “end”
token is reached

• CTC models emit a fixed number of tokens, and re-
move some number of “blank” tokens

3.3. CTC mixture model based LM

The distribution over language is traditionally modeled as a
chain of multinomial distributions, each conditioned on the
previous words. Special words for start and end of sentence
are typically incorporated.

P (Yt | Y0:t−1)

We propose to model language as a mixture of CTC distri-
butions. Each CTC distribution is a joint distributions over
tokens and alignments.

An individual CTC distribution makes independence as-
sumptions that make it incapable of modeling the complex-
ity of language. However, just as a Gaussian mixture can

approximate any distribution, we propose that a CTC mix-
ture can approximate any language model. As explained in
the background CTC loss presents a unique way of learn-
ing alignments between two sequence representations. It
can approximate distributions over a sequence of tokens of
unknown but bounded length.

We exploit this fact in an auto-encoder based training by first
learning a sentence representation using some birectional
LSTM which can then be used to predict the mean and
variance of our latent representation. We then sample from
this latent distribution and which is then passed to a decoder
composed few bidirectional LSTMs which generates a fixed
sequence length encoding of the sentence. This is then used
by the CTC aligner to give the best sequence of words.

By generating a fixed length sequence encoding rather than
generating words from a single vector helps the model better
focus on learning the structure of the language and allow the
CTC to find the best alignment of words that matches the
structure, thereby increasing the model’s capability. This
way the model encoder models the structure (grammar) of
the language and the CTC loss models the words that are
best suited for a particular structure.

We experimented with a method for performing joint model-
ing of language and structure on an overcomplete graph. We
built a large, over-complete binary tree, where every node
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emits a word or a blank. We used CTC loss to marginalize
over all possible alignments between the sentence and the
tree (Graves et al., 2006).

The outputs of the graph are read in infix order (left, self,
right recursively) to support our generative model. Each
node may emit a word and may emit more nodes to its left
and right, enabling the recurrent generation of language.

The tree itself we model as a simple Bayesian network,
where the children of a node given a parent node are param-
eterized by an artificial neural network. The initial repre-
sentation of the root phrase is actually the latent encoding
provided by a VAE or AAE architecture.

We found that training on our original network was difficult.
We added batch normalization and used residual calculations
to make training more efficient.

4. Dataset
We did our experiments on the english penn treebank
dataset (LDC2015T13) and the english web treebank
(LDC2012T13) as these datasets are reasonably sized for
us to run some learning algorithm on. These datasets also
come with the default dependency parses which enables us
to perform further analysis and help us validate individual
components of our model.

4.1. Penn Treebank Dataset

English Penn Treebank is set of annotated wall street jour-
nal stories. There are a total of 2,312 articles comprising
of roughly 49k sentences. These sentences are annotated at
various levels including tokenization, part-of-speech, depen-
dency parse, etc.

This is particularly useful as this dataset has also been well
studied for the task of language modeling and generation
tasks which would complete our entire generative story.

5. Experiments and Analysis
Since our model is a generative model it is typically quite
hard to get a sense of how good our model is doing. We
use some of the standard quantitative measures and also
come up with some interesting experiments that explains
the power of our model.

5.1. Conventional LM

We began by training a conventional left-to-right factored
language model. This model consisted of an embedding
from vocabulary to D dimensions, a L layer unidirectional
LSTM, followed by a projection layer with weights tied to
the embedding layer. Our best hyperparameter tuning was
D = 256, L = 3, resulting in a validation NLL of 83.36.

We used this model as an initial estimate of the perplexity
of the dataset, as well as a tool to evaluate the performance
of other models.

5.2. Quality Estimate using External LM

Since our model is a tree based top-down language generator
we first want to verify if we can preserve the left-to-right
dependencies needed to understand the sentence.

To do that we take an external language model which is
trained on PTB and test it on 10,000 randomly generated
samples generated by our model which was trained on the
penn tree bank dataset. We can see from the table 1 that our
model has decent perplexities when compared to language
models trained on that dataset.

Model Validation Test

Zaremba et al. (2014) - LSTM 82.2 78.4
Merity et al. (2016) - Sentinel-LSTM 72.4 70.9
Inan et al. (2016) - Variational LSTM 71.1 68.5
Shen et al. (2017) - Joint-Syntax-LM − 62.0

Our best VAE Model 88.61
Our best AAE Model 79.90

Table 1. Word perplexity on validation and test sets for the Penn
Treebank language modeling task.

5.3. Tree Generation

We generated trees from our model and visualized how those
sentences were generated, shown in Figure 7.

Figure 7. Sentence trees generated by our model

6. Conclusions
We built models around a top-down generative story of
language production. Our models are applicable to language
understanding, representation and parsing.
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We also proposed a new type of language model and a
method for aligning language to an arbitrary structure.

Future work should include more investigation into what
graphical structures or neural networks are best for gener-
ating CTC mixture models. We only explored word-level
CTC models but character-level CTC models may be even
more powerful.

The main limitations of this work are fully tuning and evalu-
ating each of the models against baselines. There are many
types of models and we did a lot of engineering to get the
resnet-based trees we ended up with. We also hope to show
that the representations learned by our models are beneficial
in downstream tasks such as sentiment classification.
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