
Improving DQN and TRPO with Hierarchical Meta-controllers

Scott Sun (scottsun) 1 Aniruddh Shetty (anirudds) 1 Nishant Gurunath (ngurunat) 1

Raunaq Bhirangi (rbhirang) 1

Abstract
Complex behaviors are comprised of multiple
layers of decision-making. This is naturally at
odds with conventional deep RL strategies that
only operate at a single temporal scale. Hier-
archical adaptations of DQNs and policy gradi-
ent methods seek to supplement flat policy agents
with a meta-controller that incrementally guides
the lower level agent over longer time scales. We
compare our own implementations of hierarchi-
cal DQN and TRPO agents on a series of en-
vironments and explore the design of informa-
tive subgoals for these algorithms. We achieve
a significant improvement over flat learners in
a stochastic MDP and several MuJoCo environ-
ments. We also examine the difficulties of con-
structing suitable subgoals in the Atari environ-
ment.

1. Introduction
Deep reinforcement learning has taken some major strides
in recent times, enabling autonomous agents to perform a
range of tasks, including object manipulation with robotic
arms and solving games like Breakout or Space Invaders. A
number of these solutions are based on flat policies, which
tend to be suitable only for simple tasks with periodic ac-
tions. The natural approach to solving larger problems
is to decompose the problem into multiple smaller goals,
which oftentimes results in easier and faster convergence
for the overall system. One method of decomposing these
problems is to utilize high level and low level goals when
solving a problem, a.k.a. hierarchical reinforcement learn-
ing (HRL). As explained in later sections, HRL algorithms
have seen great success in solving complicated tasks that
involve interplay between achieving an overarching goal
(e.g., reaching some high score or location) and mechan-
ical mastery (e.g., jumping over obstacles). Crafting a flat
policy learner to tackle such problems is incredibly com-

1Carnegie Mellon University, Pittsburgh, PA 15213, USA.

10708 Class Project, Spring, 2019.
Copyright 2019 by the author(s).

plicated, as it is difficult to convey the importance of both
of these very disparate tasks. Inadequacy in either of these
domains results in failure for the overall task.

HRL is promising for solving tasks that require the agent
to reason at a higher level to set and achieve intermedi-
ate goals over time that require mastery of more primitive
actions. While a number of methods have been proposed
based on this philosophy, they are often designed in a task-
specific manner due to the challenges associated with learn-
ing good goals. This makes them difficult to generalize. As
a result, major goals of this project will be to explore dif-
ferent HRL algorithms and their approaches to goal-setting
in order to compare and contrast their generalizability to a
wider range of problems.

The main flavor of HRL this work is proposing is similar to
the paradigm of (Vezhnevets et al., 2017) and (D. Kulkarni
et al., 2016). Broadly speaking, this involves a higher-level
component operating at a broad time scale to supervise a
lower-level component operating in the short term. Dif-
ferent HRL algorithms will be tested on tasks of varying
complexity and comparisons will be drawn between task-
specific performance as well as generalizability.

2. Previous Work
Intelligent exploration continues to be a relatively difficult
problem in the area of reinforcement learning, even for
simple environments. A comparison between several vari-
ants of Proximal Policy Optimization demonstrated that the
hierarchical variant, with policies that operate at different
temporal scales, is shown to give the best exploration per-
formance as the complexity of the environment increases
(Al-Shedivat et al., 2018). This comparison involved a
vanilla implementation, one with reward shaping, one with
policy sketches, and a hierarchical implementation using a
meta-controller to choose intermediate goals for the lower
level controller. As a result of the advantages seen with
HRL algorithms, it would be interesting to dig deeper and
understand these results.

While some approaches to HRL rely upon manually setting
goals to be learned, this limits generalizability. Motivated
by (Nachum et al., 2018), our work aims to explore a com-



Hierarchical RL

parison of different goal-setting mechanisms, e.g., hard-
coded vs. learned goals. In the paper, for example, the
authors make the system task-agnostic by taking state ob-
servations in their raw form, without representing goals and
rewarded observations within a learned embedded space.

As mentioned before, the HRL paradigm we would like
to explore and build upon is the Feudal Network (Vezh-
nevets et al., 2017) built on the original feudal reinforce-
ment learning framework (Dayan & Hinton, 1993). The
core idea behind the Feudal Network is the use of a Man-
ager and a Worker module, whereby the Manager operates
on more abstract goals over a longer temporal scale and the
Worker performs more primitive actions with fine tempo-
ral resolution. Essentially, the higher level components set
goals for lower level components that must be achieved, but
do not specify the means by which the lower level compo-
nents must achieve the goal. An important aspect of this
work is that the Worker is capable of learning subgoals as
opposed to requiring the system designer hard-code them.

Dayan and Hinton’s paper introduces two principles for the
Manager-Worker relationship: reward hiding and informa-
tion hiding. Reward hiding means that Managers reward or
punish their workers based on their performance towards
sub-goals set by the Manager irrespective of how it affects
the overall goal. This enforces mastery at achieving sub-
goals at lower levels without regard for whether those have
been correctly set. Information hiding means that each
level of hierarchy only knows the state of the system at the
granularity of their own choice of tasks.

(D. Kulkarni et al., 2016) adopt a similar hierarchical re-
inforcement learning methodology (h-DQN) that provides
some twists on goal formation. They divide the objectives
in terms of intrinsic and extrinsic goals. The rewards as-
sociated with the extrinsic goals are provided by the envi-
ronment, however, are very sparse. To address this issue,
a meta-controller and controller hierarchy, a la Manager-
Worker, is introduced. The meta-controller works on a
longer temporal scale, acts by setting goals for the con-
troller and supplies intrinsic rewards to the controller. The
controller takes actions at every time step to try and ac-
complish these goals. The overall system tries to maximize
the total expected intrinsic and extrinsic rewards. They
test their approach on a complex discrete stochastic pro-
cess and the ATARI game, “Montezuma’s Revenge”, in the
ALE environment. Unlike Feudal Networks, the h-DQN
relies on user-provided lower level subgoals. This makes
convergence easier to achieve and can be thought of as a
step towards achieving the functionality of the Feudal Net-
work paper. Ultimately, achieving similar performance to
this work is the most realistic goal for our project.

3. Methods
3.1. Environments

We perform comprehensive testing on a host of dif-
ferent environments that have continuous and discrete
action spaces. These include a stochastic MDP
test scenario utilized in (D. Kulkarni et al., 2016);
InvertedDoublePendulum-v2, Reacher-v2, and
FetchReach-v1 OpenAI MuJoCo environments; and
the OpenAI Atari environments (Brockman et al., 2016),
Montezuma’s Revenge and Ms.Pacman. The stochastic
MDP and Atari games are discrete action space environ-
ments, while the Mujoco environments have a continuous
action space.

Figure 1. Stochastic MDP environment. Starting at s2 and termi-
nating at s1, collect a reward of 1 if the agent reaches s6, otherwise
collect a reward of 0.01. This environment can be extended to an
arbitrary length.

The stochastic MDP, shown in Figure 1 is a simple test
case to verify the hierarchical model works, as it is dif-
ficult to solve optimally without a higher level controller.
One can effectively think of it as navigating a long cor-
ridor. The double inverted pendulum involves controlling
the left-right forces applied to a cart that is balancing a dou-
ble inverted pendulum. The Reacher environment involves
controlling the forces applied to a two-limb arm that must
reach and maintain its position at a target. The FetchReach
robotics task is similar to the Reacher, but involves con-
trolling more arm segments. The last two environments are
the Ms. Pacman and Montezuma’s Revenge Atari environ-
ments, which are played without direct access to the true
game state, instead relying solely on the video stream. Ms.
Pacman involves moving a character around a maze, gob-
bling up all the food pellets scattered around while avoiding
ghosts. Montezuma’s Revenge is an arcade environment
where the character must navigate several rooms to obtain
keys while avoiding skulls. The stochastic MDP, double in-
verted pendulum, and Reacher environments are easier test
cases to verify our implementations work before attempt-
ing the much harder Fetch robot and Atari environments.

3.2. Baselines

While working towards an eventual hierarchical architec-
ture capable of self-learned lower-level goals, we rely on
several simpler baseline designs. The most fundamen-
tal building block we implement is the Deep Q Network
(DQN). This involves using a neural network to estimate



Hierarchical RL

Figure 2. OpenAI Gym Environments

the Q values for each action. We also rely upon a separate
target network that fixes the Q value and updates it every
number of episodes to stabilize training. The loss function
is Huber loss. This is essentially a flat policy variant of
the h-DQN implemented by (D. Kulkarni et al., 2016). The
DQN architecture lends itself naturally to discrete action
space environments due to parameterizing Q based on ac-
tions; however, it can be modified to work on continuous
action space environments by discretizing the action space.
To produce better results for the MuJoCo continuous ac-
tion space environments, we rely on a flat and hierarchical
policy gradient methods. Policy gradient methods directly
model the action probabilities (which allows it work bet-
ter in continuous action spaces) instead of Q, and they find
parameters of the policy network to maximize the total fu-
ture expected rewards. Unlike DQNs, these are on-policy
methods. At each iteration, the policy network defines the
action probabilities according to the current state and the
parameters are updated to get a slightly better policy than
the current one according to the rewards obtained.

3.3. Proposed Model

3.3.1. HIERARCHICAL-DQN

Our proposed strategy is derived from the h-DQN frame-
work presented in (D. Kulkarni et al., 2016). We first re-
produce the model implementation they have presented in
both tabular q-learning and h-DQN forms. As discussed
above, the h-DQN framework consists of meta-controller
and controller relationship. The meta-controller feeds in-
trinsic subgoals to the controller to better deal with sparse
rewards. The Figure 3 shows the control sequence of the
h-DQN.

We applied the h-DQN method to the MDP environment
shown in Figure 1. As mentioned in the paper, we
use the states as the subgoals for the controller. The
meta-controller learns which state to guide the controller
towards next. This approach involves crafting the subgoal
space for each environment explicitly as opposed to in

Figure 3. Control Sequence Describing the Meta-Controller and
Controller Process

Feudal Networks, where the model also learns the space of
the subgoals.

For hierarchical tabular q-learning we maintain two q-
tables, one for meta-controller (state(6)× state(6)) and one
for controller (state-subgoal(36) × action(2)). To generate
the sample space we sample a subgoal from the the meta-
controller table using ε-greedy method. This subgoal-state
pair is then used to sample an action from the controller ta-
ble via ε-greedy method. Then, we perform this action in
the environment to obtain the next state. Both of these en-
tries are stored in the respective replay buffers of the meta-
controller and controller. The entries used are of the form:

entrycon = (cs, a, ns, r) (1)

where cs is current state, a is action, ns is the next state and
r is the reward.

entrymeta-con = (cs, sg, ns, tr) (2)

where sg is the subgoal and tr is the total reward for the
episode.

During training, we randomly sample a batch from each
of the replay buffers and use them to update the two tables.
The predicted q-value for meta controller is the entry corre-
sponding to the state-subgoal pair in the meta-controller ta-
ble and target q-value is computed using the Bellman equa-
tion:

qttarget
= Rt + γmax(qt+1) (3)

whereRt is the reward value in the replay buffer entry, qt+1

is the maximum value among all possible subgoals corre-
sponding to the next state entry in the replay buffer sample,
and γ is the discount rate. The table entries are updated us-
ing:



Hierarchical RL

qstate = αqstate + (1− α)qtarget (4)

The training for the controller is done in a similar fashion.
For our implementation we maintain a replay buffer of size
1M and γ = 1.

For hierarchical DQN, we use two neural networks to pa-
rameterize the meta-controller and controller. The input
to the meta controller is the current state of the environ-
ment; its output is an n-dimensional vector corresponding
to the subgoal space (where there are n subgoals). The in-
put to the controller is the state concatenated with the one-
hot encoded subgoal. The output of the network is a m-
dimensional vector representing Q values corresponding to
the action space of size m. The neural networks consist
of 2-layer MLPs with ReLU activations, with an optional
CNN prior to the MLP when the input states are images.
The sampling process and replay buffer entry generation is
similar to the tabular method except that now we sample
from the two neural networks. During training, we update
the parameters of the two neural networks by minimizing
the Huber loss between the predicted and target Q-values.
The target value is still obtained using the Bellman equa-
tion. Huber loss is defined as:

L =


1
2 (qt − qp)

2 |qt − qp| ≤ δ|

δ(qt − qp)− 1
2δ

2 otherwise

(5)

where qt is the target q-value and qp is the predicted q-
value.

The predicted value for meta-controller is sampled from
the meta-controller neural network and the target q-value
for the next state is sampled from a target neural network,
which is a copy of the meta-controller neural network and
updated every few timesteps. This delayed update ensures
the model has a fixed target.

All the following models are derived from the hierarchical
DQN approach. These are essentially extensions of the h-
DQN model for continuous action spaces.

3.3.2. HIERARCHICAL POLICY GRADIENT

For continuous observation and action spaces we extend
the idea of hierarchical DQNs to a hierarchical policy gra-
dient method. The architecture of meta-controller and con-
troller remains the same; however, they learn a policy (in-
stead of Q-value) over subgoals and actions, respectively.
After evaluating a few policy gradient methods like A2C,
we eventually settle on using Trust Region Policy Opti-
mization (TRPO) (Schulman et al., 2015), which uses an

adaptive step size for gradient descent to learn both meta-
controller and controller policies. TRPO has found to be
effective for optimizing neural network based non-linear
policies. TRPO also results in a more monotonic improve-
ment during training ac compared to A2C. It solves the fol-
lowing optimization problem:

maximizeθ Et

[
πθ(at|st)
πθold(at|st)

At

]
subject to Et [KL[πθold(.|st)|πθ(.|st)]] ≤ δ

where πθ and πθold denote the current policy and policy
from previous update cycle respectively and At is the ad-
vantage term same as advantage actor critic (A2C).

The second condition in the above equation helps to
determine the appropriate step size for policy update by
restricting the updated policy to be not very different from
the policy at previous time step.

Similarly to the hDQN, the meta-controller and controller
work in different time horizons. The meta-controller feeds
a subgoal(s) to the controller and waits while the controller
tries to take actions to achieve the subgoal.

3.3.3. FEUDAL NETWORK

This model is derived from the 2017 paper (Vezhnevets
et al., 2017). Currently, no existing implementation is
available online that is capable of reproducing the results
in this paper, so we foresee difficulty matching their results.

We get the observation xt from the environment and apply
a perceptual module to generate an intermediate repre-
sentation zt shared by the Manager and the Worker. The
Manager internally computes a latent space representation
st by passing zt through another module which is then
passed through a dilated LSTM to get the goal vector gt.

The Worker takes the shared embedding zt and feeds it
through an LSTM to get the output Ut which is combined
with wt using a dot product to get the policy π, vector of
probabilities over primitive actions. wt is obtained using a
linear transformation of the goal vectors gt.

The Worker can be trained using a standard policy gradient
algorithm with the reward from the environment combined
with the intrinsic reward given by the Manager. However,
the Manager is trained independently to predict advanta-
geous transitions in the state space and intrinsically rewards
the Worker to follow this direction. We make the assump-
tion that the Worker will closely follow the Manager’s goals



Hierarchical RL

Figure 4. Feudal Network Architecture

eventually and thus we update the gradients as follows:

∇gt = AMt ∇θdcos(st+c − st, gt(θ)) (6)

where AMt is the Manager’s advantage function, and dcos
is the cosine distance. Thus gt now has acquired a semantic
meaning as an advantageous direction in latent space st at
a temporal resolution of c.

4. Results and Analysis
4.1. Long Corridor Stochastic MDP

In order to first verify the validity of our hierarchical im-
plementations, we begin with the stochastic MDP environ-
ment, where a flat policy learner should struggle to ap-
proach the optimal reward of 1. The subgoal space for the
hierarchical agent is defined as the space of all states in
the MDP. The meta-controller converges towards selecting
increasing states until the controller has reached the end
before then transitioning backwards towards the s1 state.

Figure 5. Comparison of Q Learning performance on stochastic
MDP environment with 6 states smoothed with moving average
over every 500 episodes.

Since the MDP environment has discrete state and action
spaces, we implemented a basic tabular Q learning algo-

rithm and modified it to be hierarchical for comparison. In
a 6-state MDP, as shown in Figure 5, the hierarchical agent
clearly demonstrates the capacity to learn, unlike the flat
agent. With this working, we can confidently use this envi-
ronment as a test for our h-DQN implementation.

Since a DQN relies on more expressive neural networks
than tabular Q learning, it is capable of learning on the 6-
state MDP. Here, comparisons between flat and hierarchi-
cal variants on longer corridors are much more informative.
The results between a flat and hierarchical DQN on 8 and
10 state MDPs are shown in Figure 6.

Figure 6. Comparison of DQN performance on stochastic MDP
environment with 8 (top) vs 10 (bottom) states smoothed with
moving average over every 500 episodes.

As the number of states in the MDP is increased, the per-
formance difference between the flat and hierarchical be-
comes increasingly apparent. For 8 states, the DQN is able
to obtain some rewards, although the hDQN eventually sur-
passes it. For 10 states, the DQN virtually never obtains the
full rewards even after 20,000 episodes. This makes sense
because for a longer corridor, it is increasingly unlikely for
the flat learner to stumble upon the correct policy by ran-
domly exploring until it reaches the end of the corridor and
transitions all the way back. The hierarchical agent, on the
other hand, has a meta-controller that learns to select the
end of the corridor as its subgoal, which the controller is
able to fulfill before moving back to the first state, thereby
granting it the full reward for the environment.

4.2. Inverted Double Pendulum

Moving on to more difficult MuJoCo environments, their
continuous action spaces require binning the DQN’s action
space. The results for the DQN on the Inverted Double



Hierarchical RL

Pendulum are shown in Figure 7. Rewards are cumula-
tive across each episode. While the DQN is learning quite

Figure 7. DQN training plot on inverted double pendulum

well (a score of 8000 corresponds roughly to the max du-
ration of each episode), it exhibits inconsistent behavior
despite heavily cooling the exploration ε. As a result of
discretizing the action space, a fine movement resolution
is difficult to regress. Before proceeding to the remaining
MuJoCo environments, we investigate the performance of
A2C policy gradient method, as shown in Figure 8. Since
it performs much better than the DQN, it became clear that
achieving meaningful results on the MuJoCo environment
necessitates the use of a policy gradient method. Because
the double inverted pendulum has such a simplistic objec-
tive, it is difficult to structure as a hierarchical problem, so
comparisons with hierarchical models will be reserved for
the Reacher and FetchReach environments.

Figure 8. A2C training plot on inverted double pendulum.

4.3. Reacher

For the Reacher environment, we compare a DQN, flat
TRPO policy gradient, and hierarchical-TRPO method. We
switched to TRPO from A2C due to its superior perfor-
mance on this more difficult task. Since Reacher works
in a 2D environment, the subgoal space has 5 elements:

{x+(right), x−(left), y+(up), y−(down), stay}. The sub-
goal target is defined as

targets =



currpos + (α, 0) dir = x+

currpos + (−α, 0) dir = x−

currpos + (0, α) dir = y+

currpos + (0,−α) dir = y−

currpos dir = stay

(7)

where currpos is the current position of the Reacher’s end-
effector.

We ran Reacher in both dense and sparse meta-controller
(rext) reward settings. For dense rewards,

rext = renv (8)

where environmental reward renv is the negative Euclidean
distance from the Reacher’s end-effector to the target. For
sparse rewards, the extrinsic reward is defined as

rext =

{
−1 ‖currpos − target‖2 > δ

0 otherwise
(9)

This penalizes the Reacher if its end-effector is not within
a certain radius of the environment target. The intrinsic
reward for the controller is defined in the same manner,
except the distance is to the subgoal target, not the environ-
ment target.

rint =

{
−1 ‖currpos − targets‖2 > β

0 otherwise
(10)

For our experiments we used α = 0.25, β = 0.15 and
δ = 0.05 based on the observation space values of the
environment. The Reacher results with dense rewards are
shown in Figure 9.

Clearly, the policy gradient methods outperform the DQN,
which is consistent with results from the inverted double
pendulum. Furthermore, the hierarchical policy gradient
method converges to a higher reward than the flat policy
gradient method. For the DQN, the arm often overshoots or
misses the target. The DQN is especially troublesome with
regards to state discretization, as binning the two joints into
10 bins each results in a 100-dim output from the policy
network. This is unsustainable and produces worse results
than policy gradient.

The difference between flat and hierarchical TRPO be-
comes more apparent when the environment reward is re-
structured to be sparse, as shown in Figure 10. While the
hierarchical learner only provided marginal benefits in the
dense reward case from Figure 9, it provides a significant
improvement under sparse rewards.



Hierarchical RL

Figure 9. Comparison of reward plots on Reacher-v2 environ-
ments with standard dense rewards smoothed using a 20-episode
moving average.

Figure 10. Hierarchical TRPO versus vanilla TRPO policy gradi-
ent on Reacher-v2 environment using sparse rewards

4.4. Fetch Reach

In the Fetch Robotics MuJoCo environment, we compared
the performance of a vanilla TRPO and hierarchical TRPO
policy gradient agent for the FetchReach task. The agent’s
meta-controller uses the dense reward function from the
environment, where a negative reward is provided propor-
tional to the Euclidean distance between the robot’s end
effector and the target. The subgoals are defined as the six
cardinal directions in the xyz-space along which the end-
effector of the Fetch robot can move. The controller relies
on the same dense reward as used with the Reacher. We
used the parameter values α = 0.1, β = 0.05.

Initially we tried giving the subgoal target directly without
using direction. In this approach, the meta-controller used
a continuous policy network rather than the discrete one
(used when we specify the cardinal directions) to give the
subgoal target for the controller. This method failed, as the
meta-controller output space was too large and lacked con-
straints. To solve this problem, we first thought of adding
another reward term in the meta-controller to encourage the
meta-controller to give a subgoal not far from the current
position, but this also did not work. And now we could

set the hyperparameter α to constrain the subgoal the con-
troller has to reach. The final results are shown in Figure
11.

Figure 11. Reward vs Episodes for the Fetch Robot Reach Envi-
ronment

The hierarchical learner not only learns at a faster rate, but
also achieves a much higher reward value at convergence.
Visually, the flat policy gradient method has difficulty stop-
ping at the target point and oftentimes overshoots. The hi-
erarchical method, on the other hand, consistently reaches
and stops at the target point. The behavior of the hierarchi-
cal learner is as expected, as the controller is slowly able to
reach more and more of the subgoals it has been provided
(Figure 12).

Figure 12. Progression of controller performance over time. The
controller learns to reach the subgoals better over time.

4.5. Atari

Lastly, we attempt to design flat and hierarchical DQNs that
are able to solve Atari environments.

Since we are dealing with video streams, the agents require
the addition of CNNs to encode the images as feature vec-
tors. To provide user-defined subgoals also requires know-
ing where the character is in the game. Thus, a custom
object detector is required to localize the agent-controlled
character in the environment. We utilize an exemplar im-
age blob of the character and perform a search over the



Hierarchical RL

image for an object of the same color. This proves to be
a very robust and time-efficient strategy, as our previous
attempt with a normalized sum-of-squared differences al-
gorithm was much more computationally involved. We
also tried convolving the environment image with the tem-
plate image to produce a filtered image response where we
could simply take the maxima. However, this failed to be
lighting-invariant, as brighter objects naturally result in a
higher response regardless of how well they match the tem-
plate.

The results for Ms. Pacman are shown in Figure 13. The
flat learner demonstrates the capacity to learn over time,
albeit slowly. A random agent is capable of achieving re-
wards of around 200. For the h-DQN, we made a number of
attempts at creating a good reward structure and our efforts
are described as follows. Ultimately, the hDQN converges
poorly as a result of improper subgoal space formulation.
While initially it appears to perform better than DQN, it
quickly converges suboptimally. This demonstrates that
while the controller is learning to achieve the subgoal, the
intrinsic rewards are not well aligned with the extrinsic re-
wards.

Figure 13. Reward vs episodes for the Atari Ms.Pacman Environ-
ment, smoothed with moving average over every 50 episodes. The
hDQN is an example of poor convergence behavior we were see-
ing.

We started off with specifying the subgoals to be the power
pellets that allow Pacman to eat the ghosts. The idea was
that these subgoals would result in Pacman getting bonus
points for eating ghosts, and the meta-controller would
eventually learn to point Pacman to the nearest power pel-
let. While this would not necessarily result in the game
being solved completely, it would give us a good under-
standing of the subgoals and reward strucutre, as we moved
to a feudal network where the goal space is learned as well.

The intrinsic reward was initially defined to be 1 when Pac-
man reached the subgoal specified by the meta-controller,
and 0 otherwise. With this reward structure, Pacman was

seen to essentially stay in the same spot and not move very
far from its starting position. We determined that the re-
ward structure was too sparse for it to learn to move, and
changed the intrinsic reward to be the negative of the Eu-
clidean distance between the subgoal and Pacman’s current
position. Pacman now learns to move towards the subgoal,
but is seen to get stuck in corners while moving in this di-
rection. These corners correspond to local minima of the
intrinsic reward distribution.

We also crafted another dense intrinsic reward structure,
which was a weighted average of the extrinsic reward and
a binary reward for reaching the subgoal. This vastly im-
proved Pacman’s ability to traverse the environment, but
it would not learn to move towards the specified subgoal.
We believed this was due to the subgoals being sparsely-
distributed, and added more subgoals at multiple junc-
tions. This failed likely because although the controller
would learn to reach the subgoals that weren’t power pel-
lets, the extrinsic reward received by the meta-controller
relates very poorly to the actions it can take (choosing the
next subgoal). The meta-controller in this case operates in
a sparse environment, since it can only learn a policy based
on the rewards obtained from Pacman eating the ghosts
soon after the power pellet.

We also implemented an hDQN for the Montezuma’s Re-
venge environment, with the subgoals being different ob-
jects in the environment, like the ladders, ropes, doors and
keys. The extrinsic rewards are very sparse in this case,
with points only awarded for collecting the key and pass-
ing through the door after that. Since performance was sim-
ilarly poor, as the environment was much more challenging
than Ms.Pacman, we omitted the results for this environ-
ment.

5. Conclusion
Ultimately, we learned several lessons from applying hier-
archical models to the flat DQN and TRPO agents. While
hierarchical models can be more performant, as demon-
strated in the MuJoCo environments, it took several at-
tempts at subgoal formulation to achieve reasonable re-
sults (and this had to be repeated separately for each en-
vironment). This difficulty was very evident as we tran-
sitioned to Atari environments, where the state space was
no longer as well-defined. We notice that while HRL per-
forms marginally better in dense-reward environments, its
performance is far superior (given correct convergence) in
sparse reward environments. In essence, the strength of the
hierarchical network is most evident when it is sufficiently
straightforward to construct subgoals. While we were un-
able to achieve the ultimate goal of Feudal Networks’ fully-
learned subgoals, we obtain excellent results in solving the
MuJoCo environments with our own h-TRPO algorithm.



Hierarchical RL

References
Al-Shedivat, M., Lee, L., Salakhutdinov, R., and Xing, E.

On the Complexity of Exploration in Goal-Driven Navi-
gation. arXiv e-prints, art. arXiv:1811.06889, Nov 2018.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
CoRR, abs/1606.01540, 2016. URL http://arxiv.
org/abs/1606.01540.

D. Kulkarni, T., Rajagopal Narasimhan, K., Saeedi, A., and
B. Tenenbaum, J. Hierarchical deep reinforcement learn-
ing: Integrating temporal abstraction and intrinsic moti-
vation. 04 2016.

Dayan, P. and Hinton, G. Feudal reinforcement learn-
ing. 1993. URL http://www.cs.toronto.edu/

˜fritz/absps/dh93.pdf.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 31, pp. 3303–3313.
Curran Associates, Inc., 2018.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. CoRR,
abs/1502.05477, 2015. URL http://arxiv.org/
abs/1502.05477.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N.,
Jaderberg, M., Silver, D., and Kavukcuoglu, K. Feudal
networks for hierarchical reinforcement learning. CoRR,
abs/1703.01161, 2017. URL http://arxiv.org/
abs/1703.01161.

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://www.cs.toronto.edu/~fritz/absps/dh93.pdf
http://www.cs.toronto.edu/~fritz/absps/dh93.pdf
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1703.01161
http://arxiv.org/abs/1703.01161

