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Abstract
Meta-Reinforcement learning approaches aim
to develop learning procedures that can adapt
quickly to a distribution of tasks with the help of
a few examples. Developing efficient exploration
strategies capable of finding the most useful sam-
ples becomes critical in such settings. Existing
approaches towards finding efficient exploration
strategies add auxiliary objectives to promote ex-
ploration by the pre-update policy, however, this
makes the adaptation using a few gradient steps
difficult as the pre-update (exploration) and post-
update (exploitation) policies are quite different.
Instead of sticking to methods for more sufficient
policy adaption, we propose to explicitly model
a separate exploration policy with task-specific
variables z for the task distribution. Having two
different policies gives more flexibility in train-
ing the exploration policy and also makes adapta-
tion to any specific task easier. We also use DiCE
operator to ensure that the gradients of z can be
properly back-propagated. We show that using
self-supervised or supervised learning objectives
for adaptation stabilizes the training process and
also demonstrate the superior performance of our
model compared to prior works in this domain.

1. Introduction
Reinforcement learning (RL) approaches have seen many
successes in recent years, from mastering the complex
game of Go (Silver et al., 2017) to even discovering
molecules (Olivecrona et al., 2017). However, a common
limitation of these methods is their propensity to overfit-
ting on a single task and inability to adapt to even slightly
perturbed configuration (Zhang et al., 2018). On the other
hand, humans have this astonishing ability to learn new
tasks in a matter of minutes by using their prior knowl-
edge and understanding of the underlying task mechanics.
Drawing inspiration from human behaviors, researchers
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have proposed to incorporate multiple inductive biases and
heuristics to help the models learn quickly and generalize to
unseen scenarios. Despite a lot of effort it has been difficult
to approach human levels of data efficiency and generaliza-
tion.

Meta reinforcement learning addresses these shortcomings
by learning how to learn these inductive biases and heuris-
tics from the data itself. It strives to learn an algorithm
that allows an agent to succeed in a previously unseen task
or environment when only limited experience is available.
These inductive biases or heuristics can be induced in the
model in various ways like optimization algorithm, pol-
icy, hyperparameters, network architecture, loss function,
exploration strategies etc. Recently, a class of initializa-
tion based meta-learning approaches have gained attention
like Model Agnostic Meta-Learning (MAML) (Finn et al.,
2017). MAML finds a good initialization for a model or a
policy that can be adapted to a new task by fine-tuning with
policy gradient updates from a few samples of that task.

Since the objective of meta-RL algorithms is to adapt to a
new task from a few examples, efficient exploration strate-
gies are crucial for quickly finding the optimal policy in
a new environment. Some recent works (Gupta et al.,
2018a;b; Rakelly et al., 2019) have tried to address this
problem by using latent variables to model the distribution
of exploration behaviors. Another set of approaches (Stadie
et al., 2018; Rothfuss et al., 2018) focus on improving the
credit assignment of the meta learning objective to the pre-
update trajectory distribution.

However, all these prior works on gradient based Meta-RL
use one or few policy gradient updates to transition from
pre- to post-update policy. This limits the applicability of
these methods to cases where the post-update (exploitation)
policy is similar to the pre-update (exploration) policy and
can be obtained with only a few updates. Also, for cases
where pre- and post-update policies are expected to exhibit
different behaviors, large gradient updates may result in
training instabilities and lack of convergence.

To address this problem, we propose to explicitly model
a separate exploration policy for the distribution of tasks.
The exploration policy is trained to find trajectories that
can lead to fast adaptation of the exploitation policy on the
given task. This formulation provides much more flexibil-
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ity in training the exploration policy, which we will show
to improve sample efficiency. We will further show that,
in order to adapt as quickly as possible to the new task, it
is often more useful to use self-supervised or supervised
learning approaches, where possible, to lead to more sta-
ble gradient update steps while training exploitation policy
with the trajectories collected from a different exploration
policy.

2. Related work
Meta-Learning. Meta-learning aims to develop learning
procedures flexible under the given domain or task (Vilalta
& Drissi, 2002), and it tries to develop learning procedures
for fast adaptation to new problem or unseen data. Though
learning to perform proper and universal tuning from the
trained parameters is capable of efficient model adaptation
(Hochreiter et al., 2001; Andrychowicz et al., 2016), the
method is far from being effective in RL problems where
models need to be trained for optimization over long hori-
zons or trajectories.

Meta-Reinforcement Learning. Meta-learning algo-
rithms proposed in the RL community include approaches
based on recurrent models (Duan et al., 2016b; Finn &
Levine, 2017), metric learning (Snell et al., 2017; Sung
et al., 2018), and learning optimizers (Nichol et al., 2018).
To achieve quick adaptation, efficient exploration strate-
gies are crucial for quickly finding the optimal policy in
a new environment. While previous heuristic exploration
methods in standard RL settings include max-entropy RL
(Haarnoja et al., 2017; 2018; Eysenbach et al., 2018),
curiosity-driven methods (Pathak et al., 2017), etc., some
recent methods towards efficient exploration under meta-
RL context include designing synthetic rewards (Xu et al.,
2018), model-based RL with latent Gaussian processes
variable (Sæmundsson et al., 2018), modular (Alet et al.,
2018) or hierarchical policy search (Nachum et al., 2018),
context-based graphical models with task-specific latent
representations (Rakelly et al., 2019).

Gradient-Based Meta-RL. A set of recently proposed
meta-gradient-based approaches following Model Agnos-
tic Meta-Learning (MAML) (Finn et al., 2017) have shown
successes in RL problems. MAML aims to find a good ini-
tialization for a policy or a model that can be adapted to a
new task by fine-tuning with policy gradient updates from
a few samples of that task. Built on top of MAML (Finn
et al., 2017) , Gupta et al. (2018b) proposed structured
exploration strategies with latent variables. Gupta et al.
(2018a) performed an unsupervised policy learning from
the broad task distribution acquired via diversity-driven ex-
ploration (Eysenbach et al., 2018).

However, many of the previously mentioned gradient-
based meta learning methods involves poor credit assign-
ment to pre-adaptation behaviors, which results in poor
sample efficiency as well as ineffective task identification.
Wortsman et al. (2018) first followed the MAML objec-
tive to let the agent interact with the environment to obtain
the adapted parameters, then they learned to what extent
should they adapt by minimizing the navigation loss and
a self-supervised interaction loss. E-MAML (Stadie et al.,
2018) considered per-task sampling distributions as extra
information for exploration. They explicitly optimizes the
per-task sampling distributions during adaptation with re-
spect to the expected future returns produced by the post-
adaptation policy. Rothfuss et al. (2018) proposed proximal
meta-policy search (ProMP) to sufficiently and properly re-
act to pre-update sampling distribution in order to decide
the extent of policy adaptation in each step. They also de-
signed low variance curvature surrogate objective to control
the variance of policy gradient update, and they promoted
the meta-learning stability by controlling the divergence of
both pre and post-update policies.

Building on the work of ProMP (Rothfuss et al., 2018), we
want to explore the chances of using separate exploration
policy instead of pre-update policy to sample trajectories
for gradient update, and further explore the approaches to-
wards more stable meta gradient update steps for exploita-
tion policy adaptation from trajectories sampled by explo-
ration policy.

3. Background
3.1. Reinforcement Learning

In the context of a discrete-time finite Markov decision
process (MDP), consider a task T defined by the tu-
ple (S,A,P , r, γ,H) with state space S, action space
A, transition dynamics P , reward function r, discount
factor γ, and time horizon H . A trajectory τ :=
(s0, a0, r0, . . . , sH−1, aH−1, rH−1, sH) is a sequence of
state st, action at and reward rt received for the entire time
horizonH . The task return under the trajectory τ is defined
as the sum of discounted rewards encountered along that
trajectory: R(τ ) =

∑H
t=1 γ

trt. The goal of reinforcement
learning is to find the optimal policy π(a|s) that maximizes
the expected task return Eτ∼PT (τ |π)[R(τ )].

3.2. Meta-Reinforcement Learning

Unlike RL which tries to find an optimal policy for a single
task, meta-RL aims to find a policy that can generalize to
a distribution of tasks. Each task T sampled from the dis-
tribution ρ(T ) corresponds to a different Markov Decision
Process (MDP). These MDPs have similar state and action
space but might differ in the reward function r or the envi-
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ronment dynamics P . The goal of meta RL is to quickly
adapt the policy to any task T ∼ ρ(T ) with the help of few
examples from that task.

3.3. Credit Assignment in Meta-RL

Finn et al. (2017) introduced MAML - a gradient-based
meta-RL algorithm that tries to find a good initialization
for a policy which can be adapted to any task T ∼ ρ(T )
by fine-tuning with one or more gradient updates using the
sampled trajectories of that task. MAML maximizes the
following objective function:

J(θ) = ET ∼ρ(T )

[
Eτ ′∼PT (τ ′|θ′) [R(τ

′)]
]

with θ′ := U(θ, T ) = θ + α∇θEτ∼PT (τ |θ) [R(τ )] (1)

where U is the update function that performs one policy
gradient ascent step to maximize the expected rewardR(τ )
obtained on the trajectories τ sampled from task T . Es-
sentially, MAML tries to find a good initialization θ for
a policy which is fine-tuned to θ′ by performing the policy
gradient updateU(θ, T ) on the trajectories τ sampled from
the task T .

Rothfuss et al. (2018) showed that the gradient of the ob-
jective function J(θ) in eq. 1 can be written as:

∇θJ(θ) = ET ∼ρ(T )

[
E τ∼PT (τ |θ)
τ ′∼PT (τ ′|θ′)

[
∇θJpost(τ , τ

′)

+∇θJpre (τ , τ
′)

]]

where,

∇θJpost(τ , τ
′) = ∇θ′ log πθ(τ ′)R(τ ′)︸ ︷︷ ︸

∇θ′Jouter(
I + αR(τ )∇2

θ log πθ′(τ )
)︸ ︷︷ ︸

transformation from θ′ to θ

∇θJpre(τ , τ
′) = α∇θ log πθ(τ )

(
(∇θ log πθ(τ )R(τ ))>︸ ︷︷ ︸

∇θJ inner

(∇θ′ log πθ′(τ ′)R(τ ′))︸ ︷︷ ︸
∇θ′Jouter

)

The first term ∇θJpost(τ , τ
′) corresponds to a policy gra-

dient step on the post-update policy πθ′ with respect to
the post-update parameters θ′ which is then followed by
a linear transformation from θ′ to θ (pre-update param-
eters). Note that ∇θJpost(τ , τ

′) optimizes θ to increase
the likelihood of the trajectories τ ′ that lead to higher re-
turns given some trajectories τ . However, this term does
not optimize θ to yield trajectories τ that lead to good

adaptation steps. That is infact, done by the second term
∇θJpre(τ , τ

′). It optimizes for the pre-update trajectory
distribution, PT (τ |θ), i.e, increases the likelihood of tra-
jectories τ that lead to good adaptation steps.

During optimization, MAML only considers Jpost(τ , τ
′)

and ignores Jpre(τ , τ
′). Thus MAML finds a policy that

adapts quickly to a task given relevant experiences, how-
ever, the policy is not optimized to gather useful experi-
ences from the environment that can lead to fast adaptation.

Rothfuss et al. (2018) proposed Proximal Meta Policy
Search (ProMP) where they analyze this issue with MAML
and incorporates ∇θJpre(τ , τ

′) term in the update as well.
They used The Infinitely Differentiable Monte-Carlo Esti-
mator (DICE) (Foerster et al., 2018) to allow causal credit
assignment on the pre-update trajectory distribution, how-
ever, the gradients computed by DICE suffer from high
variance estimates. To remedy this, they proposed a low
variance (and slightly biased) approximation of the DICE
based loss that leads to stable updates.

However, the pre-update and post-update policies are of-
ten expected to exhibit very different behaviors, i.e, ex-
ploration and exploitation behaviors respectively. For in-
stance, consider a 2D environment where a task corre-
sponds to reaching a goal location sampled randomly from
the four corner regions. The agent receives a reward only
if it lies in some vicinity of the goal location. The opti-
mal pre-update or exploration policy will be to visit each
of the four corner regions sequentially whereas the ideal
post-update or exploitation policy will be to reach the goal
state as fast as possible once the goal region is discovered.
Clearly, the two policies are expected to behave very dif-
ferently. In such cases, transitioning a single policy from
pure exploration phase to pure exploitation phase via policy
gradient updates will require multiple steps. Unfortunately,
this significantly increases the computational and memory
complexities of the algorithm. Furthermore, it may not
even be possible to achieve this transition via few gradi-
ent updates. This raises an important question: Do we re-
ally need to use the pre-update policy for exploration as
well? Can we use a separate policy for exploration?

Another problem with these approaches stems from the
high variance nature of the inner loop policy gradient up-
dates resulting in both∇θJpre and∇θJpost terms being high
variance. Note that ∇θJpre computes the inner product be-
tween pre-update and post-update policy gradients. Since,
the two policy gradient terms have been computed using
two different policies (i.e. pre-update and post-update poli-
cies) on two different trajectory distributions, the resulting
updates are highly likely to be unstable. ProMP tries to sta-
bilize the updates by adding trust region constraints, how-
ever, that doesn’t completely solve the issue. This moti-
vates another question: Do we really need the pre-update
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gradients to be policy gradients? Can we use a different
objective in the inner loop to get more stable updates?

4. Method
In this section, we describe our proposed model that ad-
dress the two queries we raised in the previous section.

Using separate policies for pre-update and post-update
sampling: The straightforward solution to the first problem
mentioned above is to use a separate exploration policy µφ
responsible for collecting trajectories for the inner loop up-
dates. Following that, post-update policy πθ can be used to
collect trajectories for performing the outer loop updates.
Unfortunately, this is not as simple as it sounds. To under-
stand this, let’s look at the inner loop updates:

U(θ, T ) = θ + α∇θEτ∼PT (τ |θ) [R(τ )]

When the exploration policy is used for sampling trajecto-
ries, we need to perform importance sampling. The update
would thus become:

U(θ, T ) = θ + α∇θEτ∼QT (τ |φ)

[
PT (τ |θ)
QT (τ |φ)

R(τ )

]

where PT (τ |θ) and QT (τ |φ) represent the trajectory dis-
tribution sampled by πθ and µφ respectively. Note that the
above update is an off-policy update which results in high
variance estimates when the two trajectory distributions are
quite different from each other. This makes it infeasible to
use the imporatance sampling update in the current form.
To address this instability issue, let us consider the second
question we raised before.

Using a self-supervised/supervised objective for the in-
ner loop update step: The instability in the inner loop
updates arises due to the high variance nature of the pol-
icy gradient update. Note that the objective of inner loop
update is to provide some task specific information to the
agent with the help of which it can adapt its behavior in
the new environment. One potential solution of the high
variance update is to use some form of self-supervised or
supervised learning objective in place of policy gradient in
the inner loop to ensure that the updates are more stable.
We propose to use a network for predicting some task (or
MDP) specific property like reward function, expected re-
turn or value. During the inner loop update, the network
updates its parameters by minimizing its prediction error
on the given task. Unlike prior meta-RL works where the
task adaptation in the inner loop is done by policy gradi-
ent updates, here, we perform gradient descent on a super-
vised loss objective function resulting in stability during
the adaptation phase.

4.1. Model

Figure 1. Model Flowchart: Black structures are those consistent
with E-MAML/ProMP. Red structures are those differs from E-
MAML/ProMP. The thin-dotted arrow means the parameters re-
lated to that node.

Our proposed model comprises of three modules, the ex-
ploration policy µφ(s), the exploitation policy πθ,z(s), and
the self-supervision network Mβ,z(s, a). Note that Mβ,z

and πθ,z share a set of parameters z while containing their
own set of parameters β and θ respectively. Our model dif-
fers from E-MAML/ProMP mainly because of the separate
exploration policy and the task-specific latent variable z,
and the detailed design comparisons are shown in Fig. 1.

The agent first collects a set of trajectories τ using its ex-
ploration policy µφ for each task T ∼ ρ(T ). It then up-
dates the shared parameter z by minimizing the regression
loss (Mβ,z(s, a)−M t(s, a))

2 as shown:

z′ = U(z, T ) = z − α∇zEτ∼QT (τ |φ)[
H−1∑
t=0

(
Mβ,z(st, at)−M(st, at)

)2]

where, M(s, a) is the target which can be any of the task
specific quantity like reward, return, value, etc. We further
modify the above equation by multiplying the DICE oper-
ator to simplify the gradient computation with respect to φ
as DICE allows it to be computed in a straightforward man-
ner with back-propagation. This also eliminates the need to
apply the policy gradient trick to expand the above expres-
sion for gradient computation. The update then becomes:

z′ = U(z, T ) = z − α∇zEτ∼QT (τ |φ)[
H−1∑
t=0

(
t∏

t′=0

µφ(at′ |st′)
⊥(µφ(at′ |st′))

)(
Mβ,z(st, at)−M(st, at)

)2]

where ⊥ is the stop gradient operator as introduced in Fo-
erster et al. (2018). After obtaining the updated parameters
z′, the agent samples trajectories τ ′ using its updated ex-
ploitation policy πθ,z′ . Note that our model enables the
agent to learn a generic exploitation policy πθ,z for the task
distribution which can then be adapted to any specific task
by updating z to z′ as shown above. Effectively, z′ encodes
the necessary information regarding the task that helps an
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Algorithm 1 Model-Agnostic Meta-Exploration
1: Require: Task distribution ρ(T ), step sizes α, η
2: while not converge do
3: Sample a batch of tasks Ti ∼ ρ(T )
4: for all sampled tasks Ti do
5: Collect pre-update trajectories τTiµ using µφ(s)
6: Update z by minimizing (Mβ,z(s, a)−M t(s, a))

2:

z′ = U(z, T ) = z − α∇zEτ
Ti
µ ∼QTi (τ |φ)

[
H−1∑
t=0

(
t∏

t′=0

µφ(at′ |st′)
⊥ (µφ(at′ |st′))

)(
Mβ,z(s, a)−M t(s, a)

)2]

7: where
(∏t

t′=0
µφ(at′ |st′ )
⊥(µφ(at′ |st′ ))

)
is the DiCE operator

8: Collect post-update trajectory τTiπ using πθ,z′(s)
9: Policy gradient update w.r.t post-update trajectory τTiπ to optimize all parameters z, θ, φ, β, with the objective

J(z′, θ) = ET ∼ρ(T )

[
EτT

π ∼PT (τT
π |θ,z′)

[
R(τTπ )

] ]

agent in adapting its behavior to maximize its expected re-
turn.

After obtaining the updated parameters z′, the agent uses
the exploitation policy πθ,z′ , parameterized by the updated
parameters z′ to collect the validation trajectories τTπ for
each task T . The collected trajectories are then used to
perform a policy gradient update to all parameters z, θ, φ
and β using the gradients computed by back-propagation
for the following policy gradient objective:

J(z′, θ) = ET ∼ρ(T )

[
EτT

π ∼PT (τT
π |θ,z′)

[
R(τTπ )

] ]

Unlike traditional meta-RL algorithms where both the
inner-loop and outer-loop updates are policy gradient up-
dates, in this work, the inner-loop update is a supervised
learning gradient descent update whereas the outer-loop
update remains to be a policy gradient update. The pseudo-
code of our algorithm is shown in algorithm 1.

We found that implementing algorithm 1 as it is leads to
high variance DICE gradients. This consequently leads to
high variance gradients for the φ as well resulting in insta-
bility during training and poor performance of the learned
model. To alleviate this, we apply some variance reduction
techniques as described below.

The vanilla DICE gradients can be written as follows:

∇φJ(z′, θ) = ET ∼ρ(T )

[
Eτ∼QT (τ |φ)

H−1∑
t=0

α∇φ logµφ(st)[
H−1∑
t′=t

(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ ′)R(τ ′))

>
)

(
∇z
(
Mβ,z(st, at)−M(st, at)

)2))]

The above expression can be viewed as a policy gradient
update:

∇φJ(z′, θ) = ET ∼ρ(T )[
Eτ∼QT (τ |φ)

H−1∑
t=0

α∇φ logµφ(st)Rµt
]

(2)

with returns

Rµt =

[
H−1∑
t′=t

(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ ′)R(τ ′))

>
)

(
∇z
(
Mβ,z(st, at)−M(st, at)

)2))]
(3)

Drawing inspiration from Mnih et al. (2016), we replace the
returnRµt in 3 with an advantage estimateAµt and apply the
following gradients:

∇φĴ(z′, θ) = ET ∼ρ(T )

[
Eτ∼QT (τ |φ)

H−1∑
t=0

α∇φ logµφ(st)Aµt
]
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where,

Aµt = rµt + V µt+1 − V
µ
t (4)

where V µt is computed using using a linear feature baseline
(Duan et al., 2016a) fitted on the returnsRµt and rµt is given
by:

rµt =
(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ ′)R(τ ′))

>
)

(
∇z
(
Mβ,z(st, at)−M(st, at)

)2))
(5)

5. Experiments
We have evaluated our proposed model on the environ-
ments used by Finn et al. (2017) and Rothfuss et al. (2018).
Specifically, we use the following environments:

• Point navigation task - Each task corresponds to
reaching a randomly sampled goal location in a 2D
environment. The goal location is present in one of
the four corner regions of the environment. This is a
sparse reward task where the agent receives a reward
only if it is sufficiently close to the goal location. In
other words, it is the correct corner region that con-
tains the goal. Thus, to successfully identify the task,
the agent must learn to efficiently explore the differ-
ent corner regions in the sparse reward task and then
proceed to the goal.

• Meta-RL benchmark continuous control tasks - We
tested our proposed model on 3 Continuous control
Mujoco environments : AntRandDir, HalfCheetahVel
and HalfCheetahFwdBack. All of these environments
are dense reward ones.

– AntRandDir - A 6 legged agent is specified one
of the 2 directions (forward or backward) and is
rewarded if it goes in that direction.

– HalfCheetahVel - A 2 legged agent is specified a
particular velocity in range (0,3). It is rewarded
if it goes at that velocity.

– HalfCheetahFwdBack - A 2 legged agent is spec-
ified one of the 2 directions (forward or back-
ward) and is rewarded if it goes in that direction.

We noticed that the dense reward environments used in
Rothfuss et al. (2018) and Finn et al. (2017) had different
reward functions. We chose to use the environments used
in Finn et al. (2017) for our experiments. That might be
the reason for the instability in ProMP. However that also
speaks to the immense sensitivity of their models to hyper-
parameters. In fact, even the experiments we ran on their
own environments showed similar unstable behavior.

We treat the shared parameter z as a learnable latent em-
bedding. The exploitation policy πθ,z(s) and the self-
supervision network Mβ,z(s, a) concatenates z with their
respective inputs. All the three networks have the same ar-
chitecture as that of the policy network in Finn et al. (2017).
For the self-supervision network, we use the returns cal-
culated at each time step of the exploration policy as the
self-supervision signal for the adaptation phase.

We compare our model against MAML-TRPO, MAML-
VPG (vanilla policy gradient) and ProMP. Note that we
used the same hyperparameters as specified in the MAML
repository1. We used the offical ProMP repository2 for run-
ning their method on all the environments. Also, we restrict
ourselves to a single adaptation step in all environments,
but it can be easily extended to multiple gradient steps as
well. For our model as well, we restricted to the same
hyperparameters used by 3, but instead of using conjugate
gradient updates we used Adam (Kingma & Ba, 2014) op-
timizer with a learning rate of 7e − 4 for all parameters
except z which uses 4e− 5.

5.1. Dense Reward Tasks

Meta RL Benchmark Continuous Control Tasks. We
show the results for the Dense reward environments from
the Meta RL benchmark tasks, namely HalfCheetahDir,
HalfCheetahVel and AntDir. The performance plots for all
the 4 algorithms are shown in Fig. 2. In all the environ-
ments, our proposed method outperforms others in terms
of asymptotic performance and sample complexity. As ev-
ident from the figures, the training is much more stable for
our method especially when compared with ProMP. This
can also be noted from the much lower variance of our up-
dates compared to the baselines. Although ProMP man-
ages to reach similar peak performance to our method in
HalfCheetahFwdBack and HalfCheetahVel, the training it-
self is pretty unstable indicating the inherent fragility of
their updates. We noticed that the performance of ProMP
decreases suddenly during the training in the two Half
Cheetah environments. This might be due to the fact that
the results reported in the ProMP work are on environments
whose rewards have been modified from the environments
used in MAML, but we used the same hyperparameters as
reported in their official repository. With significant hy-
perparameter tuning, one can expect to see stable training
of ProMP on these environments as well, however, that in
itself speaks about the sensitivity of the algorithm with re-
spect to hyperparameters. Our algorithm particularly per-
forms well in AntDir environment where the rewards are
largely uninformative in the initial stages of training given

1https://github.com/cbfinn/maml_rl
2https://github.com/jonasrothfuss/ProMP
3https://github.com/cbfinn/maml_rl

https://github.com/cbfinn/maml_rl
https://github.com/jonasrothfuss/ProMP
https://github.com/cbfinn/maml_rl
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(a) 2D Point Navigation (b) AntDirEnv

(c) HalfCheetahDirEnv (d) HalfCheetahVelEnv

Figure 2. Comparison of our method with 3 baseline methods in sparse and dense reward environments.

the large state space. Thus, here as well, exploration and
stable updates become critical thus allowing our algorithm
to perform much better than the baselines.

5.2. Sparse Reward Tasks

2D Point Navigation. We show the performance plots for
all four algorithms in the sparse reward 2DPointEnvCorner
in Fig. 2. The difference between our method and the
baselines is even more significant in this environment given
the sparse reward scenario. In this environment, the agent
needs to perform efficient exploration and use the sparse
reward trajectories to perform stable updates both of which
are salient aspects of our algorithm. Our method is able to
achieve this as it evident from the plots. It is able to reach
peak performance and show stable behavior. ProMP, on the
other hand, shows much more unstable behavior than in the
dense reward scenarios, although it manages to reach sim-
ilar peak performance to our method. The other baselines
struggle to do much in the environment since they do not
explicitly incentivize exploration for the pre-update policy.

5.3. Ablation Study

We perform several ablation experiments to analyze the im-
pact of different components of our algorithm on 2D point
navigation task. Fig. 3 shows the performance plots for the
following 5 different variants of our algorithm:

VPG-Inner loop : The semi-supervised/supervised loss in
the inner loop is replaced with the vanilla policy gradient
loss as in MAML while using the exploration policy to
sample the pre-update trajectories. This variant illustrates
our claim of unstable inner loop updates when naively us-
ing an exploration policy. As expected, this model per-
forms poorly due to the high variance off-policy updates
in the inner loop.

Reward Self-Supervision : A reward based self-
supervised objective is used instead of return based self-
supervision, i.e, the self-supervision network M now pre-
dicts the reward instead of the return at each time step. This
variant performs reasonably well but struggles to reach
peak performance since the task is sparse reward. This
shows that the choice of self-supervision objective is also
important and needs to be chosen carefully.

Vanilla DiCE : In this variant, we directly use the DICE
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Figure 3. Ablation results

gradients to perform updates on φ instead of using the low
variance gradient estimator. The leads to higher variance
updates and unstable training as can be seen from the plots.
This shows that the low variance gradient estimate had a
major contribution to the stability during training.

E-MAML Based : Used an E-MAML (Stadie et al., 2018)
type objective to compute the gradients w.r.t φ instead of
using DICE, i.e, directly used policy gradient updates on
µφ but instead with returns computed on post-update tra-
jectories. This variant ignores the causal credit assignment
from output to inputs. Thus, the updates are of higher vari-
ance, leading to more unstable updates, although it man-
ages to reach peak performance.

Ours : Used the low variance estimate of the DICE gra-
dients to compute updates for φ along with return based
self-supervision for inner loop updates. Our model reaches
peak performance and exhibits stable training due to low
variance updates.

These ablations illustrate that the self-supervised objective
had a huge role to play in improving stability in the up-
dates. In fact, even the choice of the self-supervised ob-
jective can be critical in some cases (e.g, predicting reward
v/s return). Further, we also show that the updates on ex-
ploration policy are also critical. The experiments above
show that the variance reduction techniques used in the ob-
jective of exploration policy also have a huge impact on the
performance.

6. Discussions
The above experiments illustrate that our approach pro-
vides significantly more stable updates as compared to
ProMP and allows for much faster training the the MAML
variants especially when the rewards aren’t informative
enough or sparse. More importantly, this (although not
concretely) shows that in most of these tasks the explo-
ration and exploitation policies were indeed significantly

different which is what led to the instability in ProMP up-
dates. In fact, this is one of the reasons we were suspicious
of the environments in the official repository of ProMP and
chose not to use them. They had shaped the reward a lit-
tle in AntDir and HalfCheetahDir and we suspect that this
might have been done to ensure their model shows reason-
able results in these environments.

Also, we would like to note that the idea of using a separate
exploration and exploitation policy is much more general
and doesn’t need to be restricted to MAML. It is indeed
surprising that the idea of exploration hasn’t been explored
much in other meta-learning approaches, leave alone us-
ing a separate exploration policy. Given the requirements
of sample efficiency of the adaptation steps in the meta-
learning setting, exploration is a very crucial ingredient and
has been vastly under explored.

7. Conclusion and Future Work
Unlike conventional meta-RL approaches, we proposed to
explicitly model a separate exploration policy for the task
distribution. Having two different policies gives more flex-
ibility in training the exploration policy and also makes
adaptation to any specific task easier. We showed that,
through various experiments on both sparse and dense re-
ward tasks, our model outperforms previous works while
also being very stable during training. This validates that
using self-supervised techniques increases the stability of
these updates thus allowing us to use a separate exploration
policy to collect the initial trajectories.

As for future work, we plan to do the following extension :

• We plan to experiment on more environments and add
auxiliary objectives for the exploration agent. Specif-
ically we plan to design our own sparse reward en-
vironments based on the mujoco benchmark environ-
ments to demonstrate the benefits of our method in
more complicated sparse reward environments

• We also intend to incorporate the PPO (Schulman
et al., 2017) inspired modifications made by ProMP
(Rothfuss et al., 2018) to its objective. This would al-
low us to perform multiple outer-loop updates to the
agents after each rollout leading to faster convergence
of our model.

• But more importantly, decoupling the exploration and
exploitation policies allows us to perform off-policy
updates. This would tremendously improve sample
efficiency. Thus, we plan to test it as a natural exten-
tion of our approach.

• Explore the use of having separate exploration and ex-
ploitation policies in other meta-learning approaches



Meta Exploration for Model-Agnostic Reinforcement Learning

References
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