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Abstract
We study the problem of augmenting contextual
explanation networks (CENs) with logic rules.
Compared to existing interpretable models, logic
rules can potentially provide even more inter-
pretable decisions, since they explicitly present
the features used to make the decision. How-
ever, our experiments show that the effective-
ness of logic rule explanations depend strongly
on the informativeness of the interpretable fea-
tures used to construct the logic rules, as effi-
ciency concerns limit the size of the logic rules
to be around 3. Nevertheless, qualitative analysis
of our results suggest that our proposed method
gives more interpretable results, making it use-
ful to fields where white-box models are needed,
such as medicine.

1. Introduction
Machine learning models have obtained better and better
performance on many challenging tasks, usually at the cost
of interpretability. This makes it difficult to analyze such
models and determine their general robustness, reliability,
and fairness. This also discourages the use of these models
in real-world applications, where such qualities are desired
in the predictive models used.

Contextual Explanation Networks (CEN) (Al-Shedivat
et al., 2017) aimed to tackle this problem using a frame-
work for models that learn to both predict and explain. In
particular, the model learns to give an interpretable predic-
tion using an interpretable model (traditionally linear mod-
els), with the help of a contextual model (typically a deep
neural network). The current work on CEN only describes
learning linear models for explanations on the interpretable
attributes, but other prediction models could be used that
still preserve interpretability.

As such, we will utilize logic rules (Okajima & Sadamasa,
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2018) as our explanation model, where each prediction is
accompanied with a set of logical explanations. Further-
more, different deep networks are explored as the contex-
tual model and having these two models work together to
learn highly accurate and interpretable predictions is the
goal of the augmented CEN developed in this paper.

2. Literature Review
In recent years great strides have been made in developing
model interpretability methods and the paradigm breaks
out into two approaches: post-hoc analysis and embedded
interpretability.

2.1. Post-hoc Analysis

LIME (Ribeiro et al., 2016) is an algorithm that set out
to cultivate trust between practitioners and machine learn-
ing models by explaining the predictions of any black box
classifier or regressor through approximated locally inter-
pretable models. After a black box model has finished
training, LIME hones in on a single data instance, x, and at-
tempts to explain the output of the black box model , f(x),
by using some explainable model g, e.g., linear classifier.
LIME is able to learn the best simple linear model, us-
ing interpretable features, which can be used to understand
the black box prediction f(x). While LIME has showed
great potential, Alvarez-Melis & Jaakkola (2018) showed
some instability with LIME, e.g., two similar data instances
yielded very different explanations.

2.2. Embedded Interpretability

Hu et al. (2016) aimed to incorporate logical rules into neu-
ral prediction. In this paper, they train a “teacher” network
alongside a “student” network. The teacher network takes
the same inputs as the student, but must additionally sat-
isfy predefined first-order logic rules, that are encoded us-
ing soft logic (continuous instead of binary truth values).
At each iteration, a new teacher network is created by pro-
jecting the student network. The student network is then
optimized by both minimizing the loss and trying to im-
itate the output of the teacher network. In this way, the
student network is regularized using the logic rules, but is
not constrained to using the rules during test time.
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Al-Shedivat et al. (2017) proposed a class of models that
learned to predict by generating and leveraging intermedi-
ate explanations. CENs generate parameters for intermedi-
ate graphical models which are further used for both pre-
dictions and interpretations. Instead of doing post-hoc ex-
planations, it learns to predict and explain jointly. CENs
have close to state-of-the-art performance. While each pre-
diction made by CEN comes with an explanation, the pro-
cess of conditioning on the context is still uninterpretable.
Moreover, the space of explanations considered in this
work assumes the same graphical structure and parameter-
ization for all explanations and uses a simple sparse dictio-
nary constraint, which can be limiting.

Very similar to decision trees, Bayesian Rule Lists (Letham
et al., 2015) generate an if-then decision list that is used
to classify a given example x. The decision list is a set
of antecedents where a single antecedent may look some-
thing like: if age > 30 and isMale. Maximum likelihood
estimation is used to learn the parameters where priors
are used to ensure the learned decision list is not long in
both total number of antecedents and number of logicals
per antecedents. BRLs proved to perform just as good, in
some cases better, than traditional machine learning mod-
els, while providing highly interpretable results. Their in-
ception was motivated by applications within the medical
field where doctors could use field expertise and machine
learning to inform decision making.

3. Relevant Work
3.1. Contextual Explanation Networks

We define a dataset as D = {c(i),x(i), y(i)}Ni=1 where c(i)

are context features, x(i) are interpretable features, y(i) is
the target and N is the number of training examples. The
difference between c and x is that c are features that tends
to come with low interpretability (image data, video data,
etc.), while x are highly interpretable features (categorical
data, tabular data, super pixels etc.). The goal of CENs is
to learn a model Pw(y | x, c) parametrized by w that can
predict y from x and c

y ∼ P(y|x,θ), θ ∼ Pw(θ|c)

Pw(y | x, c) =

∫
P(y | x,θ)Pw(θ | c) dθ

where θ can be viewed as some encoding of the context c.
The Pw(θ|c) is typically modeled with a delta function and
in practice is a deep network with a soft attention mecha-
nism. Furthermore, P(y|x,θ) tends to be a linear model
(like logistics regression or CRF). The model is trained
end-to-end and learns to use both, c and x to generate a
prediction, while explanations lie in the linear model and
are evaluated on an example-by-example basis.

In the coming sections we build on this framework and in-
corporate work done by (Okajima & Sadamasa, 2018) with
hope of producing more interpretable explanations, while
maintaining CENs’ current state of the performance.

4. Method
Our final approach was slightly different from what was
submitted during the Midway Report. In the Midway Re-
port, our proposed approach involved using a BRL as the
explanation model of the CEN (see Appendix A for de-
tails). However, further experimentation showed that our
approach was intractable. Hence, we decided to simplify
the model, and instead use decision rules as our explana-
tion model.

Here, we define decision rules as a single antecedent. For
example, “age > 30 and isMale” is a possible decision rule
explanation that our model can output. Decision rules are
made over a limited number of interpretable features. For
example, the previous decision rule is made over the fea-
tures “age” and “gender” (isMale).

To obtain the set of decision rulesA, for each datapoint, we
first obtain a set of interpretable features for each datapoint
(see Section 5.1 for more details). Then, we use the FP-
Growth algorithm (Borgelt, 2005) to obtain sets of features
that frequently occur together, and are satisfied by a signifi-
cant proportion of the training data. This gives usA, the set
of antecedents from which we can choose from. The exact
decision rules generated depend on the dataset in question,
and is described in Section 5.1 in further detail.

4.1. CENs with decision rule explanations

We consider the multiclass classification setting.

We first obtain a contextual encoding φ1 = gw1
(c) ∈ Rh.

The structure of gw depends on c. For example, if c is a
sequence, then g might be parameterized by a RNN.

Using this encoding, we compute p(θ | c) using dot-
product attention with φ1. To do this, we need to encode
each logic rule using a vector.

4.1.1. VECTOR REPRESENTATION OF DECISION RULES

The intuitive idea behind our representation of decision
rules is that rules that are satisfied by similar datapoints
should have similar representations.

Hence, given inputs x = {xi}Ni=1 and antecedents A, de-
fine

Sij = 1[xi satisfies aj ]

So S ∈ {0, 1}N×L is a binary matrix that indicates whether
some input xj satisfies some antecedent aj . Then, to com-
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pute the representation ψj for antecedent aj , we average
the representations φ2 of the inputs that satisfy it. Hence,
define:

Tij =
1∑n

k=1 Skj
Sij

ψj = T ᵀ
ijΦ2

where Φ2 = gw2(c) ∈ RN×h is a separate encoding of the
context. While we could set Φ2 = Φ1 to speed up training,
we found that doing so worsened the model’s performance
significantly.

Finally, to compute P (aj | c), we use dot-product attention
between ψj and φ1(c):

Pw1,w2
(aj | x, c) = [T ᵀΦ2φ1(c)]j

For a given antecedent a, we use the MLE estimate of
p(y | a), which is simply the ratio of training examples
that satisfy a and have the corresponding label, with some
smoothing. Concretely, let Nj,` be the number of data-
points have label ` and satisfy aj . Then,

p(y = ` | aj) =
Nj,` + α∑

`′∈Y Nj,`′ + α

Therefore, given the sections above, for each datapoint
(xi, yi), we can calculate

Pw(yi | xi, ci) =
∑
a∈A

p(yi | a)pw(a | xi, ci)

Pw(y | x, c) =

n∏
i=1

Pw(yi | xi, ci)

During training, we minimize this negative log-likelihood
by optimizing w using gradient descent.

5. Results
We test our model on a wide variety of tasks, and inves-
tigate the performance and interpretability of our model,
compared to other baselines.

5.1. Datasets and preprocessing

We experimented with three different datasets: SUPPORT2,
MNIST, and IMDB.

5.1.1. SUPPORT2

The SUPPORT2 dataset contains information about inten-
sive care unit patients. Each patient was represented by a
set of categorical (income, race, gender etc.) and contin-
uous features (age, body temperature etc.). The frequent

itemset mining algorithm we use, FP-Growth, only works
with binary/categorical features, so the data was prepro-
cessed to convert the continuous features to categorical fea-
tures by splitting up the values into quartiles.

Typically, survival analysis models output T , the predicted
survival time, which makes it a regression task. Here, we
adopt a similar (but slightly different) approach as in Al-
Shedivat et al. (2017) and frame survival analysis as a mul-
ticlass classification task.

The range of possible times is split into intervals repre-
sented by binary variables (y1, y2, y3, ..., ym), which indi-
cate whether the event (death, in this case) occurs in that
particular interval. The final variable ym indicates whether
the event occurred after of the range. So exactly one yi
is true for any input, making it a multiclass classification
problem.

As the BRL algorithm performed poorly on classification
when the number of classes were large, we tried using
larger intervals for the death event: 7 days (SUPPORT2 1-
week), 28 days (1-month), 84 days (3-month), and whether
the death event occurred at all (binary). We only consid-
ered death events in the first 1092 days, like in Al-Shedivat
et al. (2017).

5.1.2. MNIST

In (Al-Shedivat et al., 2017), the interpretable features used
are either superpixels of the original 28× 28 image, or his-
togram of oriented gradients (HOG) features. For better
interpretability, we work with only superpixels. As the ef-
ficiency of our model’s training depends on the total num-
ber of antecedents, we use the values of 7 × 7 superpixels
(each of size 4×4), converted to categorical features, as our
rules. However, for the context, we use the original 28×28
image.

5.1.3. IMDB

We also test our model on binary sentiment prediction with
the IMDB movie review dataset (Maas et al., 2011). Fol-
lowing the procedure adopted by (Al-Shedivat et al., 2017),
we use bag-of-words features as the interpretable features
from which we obtain decision rules. We convert the bag-
of-words into decision rules by having a feature when a
word is present in the review. For the context, we use the
original review, truncated for efficiency.

5.2. Preliminary Results

As a baseline for our CEN+BRL model, we first adapted
the original BRL implementation, which only considers bi-
nary classification, for survival analysis.

To learn the rule lists, the Metropolis-Hastings algorithm
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Dataset Acc Ratio # classes
SUPPORT2 (binary) 0.755 0.063 2

SUPPORT2 (3-month) 0.453 0.035 14
SUPPORT2 (1-month) 0.353 0.014 40
SUPPORT2 (1-week) 0.17 0 157

Table 1. Test accuracy of the final BRL chosen for the SUPPORT2
dataset, and the acceptance ratio during Metropolis-Hastings sam-
pling. We report the results for different interval sizes chosen for
the survival time for SUPPORT2.

Model Acc@25 Acc@50 Acc@75 RAE
MLP 51.3 62.6 64.4 0.91

CEN+CRF 91.2 90.9 80.8 0.751
CEN+RCN3 83.8 98.7 82.8 0.997

Table 2. Performance of models on the SUPPORT2 dataset.
CEN+RCNn indicates that the set of decision rules A contains
rules that cover at most n interpretable features.

Model Accuracy (%)
CEN+MLP 98.7
CEN+RCN2 52.9
CEN+RCN3 60.4

Table 3. Performance of models on the MNIST dataset.
CEN+RCNn indicates that the set of decision rules A contains
rules that cover at most n interpretable features.

Model Accuracy (%)
CEN+MLP 81.2
CEN+RCN2 57.8

Table 4. Performance of models on the IMDB dataset.
CEN+RCNn indicates that the set of decision rules A con-
tains rules that cover at most n interpretable features.

was used. Table 1 shows the acceptance ratio during sam-
pling and classification accuracy of the final decision list
on the test set.

As the table shows, the BRL algorithm performs poorly in
multiclass classification. Furthermore, the acceptance ra-
tio during sampling is low. Analyzing the log-posteriors of
the generated rule lists during sampling, the proportion of
sampled rule lists with higher log-posteriors than the cur-
rent sample greatly decreased as the number of possible
antecedents increased, which is probably the cause of the
low acceptance ratio.

The time taken for learning also increased greatly as many
more sampling iterations were required for convergence as
the number of antecedents increased, with models for the 1-
month and 1-week datasets taking several hours. The BRL
algorithm failed to converge on the 1-week dataset even
after 1 million sampling iterations.

5.3. Further results

5.3.1. SUPPORT2

Table 2 shows the results of our model and baseline mod-
els on the SUPPORT2 dataset. We report the accuracy of
predicting the survival of the patients at each quartile of
survival time (Acc@25, Acc@50, Acc@75). Based on the
accuracy metrics, our model performs competitively with
the baseline CEN+CRF model. The total number of mined
antecedents was low compared to the other datasets, par-
tially due to the smaller number of features in the data.
When mining for antecedents that cover at most 3 features,
we have about 10K antecedents to choose from. Further-
more, qualitative analysis suggests that our model poten-
tially gives more interpretable results than the baseline CRF
model (see Section 6).

5.3.2. MNIST

As shown in Table 3, our model performs very poorly com-
pared to the baseline CEN model. Intuitively, this makes
sense as due to space limitations, we could only use de-
cision rules containing at most 3 superpixels, which will
perform worse than even linear models, which can still use
all (super)pixels of the image to make a decision.

This suggests that in order to maximize the performance
of the decision rule explanation, significant effort has to
be made to ensure that the interpretable features that the
decision rules contain must be as informative as possible.

5.3.3. IMDB

Table 4 shows the performance of our model and the base-
line CEN+MLP model on the IMDB movie review dataset.
Like for MNIST, our model performs significantly worse
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compared to the baseline, due to the large number of an-
tecedents even when they cover only a few features (for ex-
ample, after mining for possible antecedents that cover at
most 3 features, we had almost 100K possible antecedents
to choose from).

Like for MNIST, it seems that smarter feature selection
would help our model to perform better.

6. Interpretability Analysis
While our proposed model does not outperform the CEN-
CRF model with respect to accuracy, our team argues our
model delivers more interpretable explanations. We begin
by comparing the results across both models on the Sup-
port2 dataset. Figure 1 highlights how well both models
were able to predict when a patient would become deceased
across the test examples. We notice at time period eight is
when both models were able to obtain their best accuracy.
We use this time period to compare explanations, where we
identify the examples where both models were able to cor-
rectly classify the deceased flag at this time period. Of the
1,000 test examples, there were 854 examples where both
models were able to correctly classify. In the coming sec-
tion we will randomly select from these 854 examples and
qualitatively analysis each model’s explanations.

Figure 1. Accuracy by time across CEN-CRF and RCN

6.1. CEN-CRF Interpretability

Because the explanation layer of CEN-CRF is a conditional
random field, we can use the weights generated across all
854 examples in the CRF layer as feature magnitude ex-
planations. Feature weights that are the most positive and
negative (furthest away from 0) can be interpreted as the
features that had the most impact on an example’s predic-
tion at this given time period. As a result, we can visualize
a heat-map across the 51 weights and some randoms exam-
ples to see which features contributed the most to a given
prediction.

6.2. CEN-RCN (3) Interpretability

In the CEN-RCN (3) model each prediction is accompanied
with 3 logicals, where all logicals are satisfied by a given
example’s interpretable features. Table 5 highlights a single
test example and the explanations that were generated for
its prediction at time period 8.

Test Example Antecedent Prob Deceased
37 slos < 0.009

0.301 < pafi < 0.366
incomeUnder$11k

0.08

Table 5. Examples of CEN-CRF (3) explanations at time period 8

We can see in Table 5 that slos, pafi and income were were
the explanation features and the range of values that were
taken on by this test example. So, we can also generate a
heat map for the CEN-RCN predictions where each feature
simply receives a count of 1, if it was used in an example’s
prediction.

6.3. Heat-map Comparison

We randomly selected 20 test examples that were both cor-
rectly classified by both models and generated respective
heat maps as described in the previous sections. Figure 2
and Figure 3 highlight the respective heat maps. In Figure 2
we notice the magnitude of the weights over the features is
extremely sparse. For these 20 examples it is clear almost
all features contributed in the final prediction. In the case of
Figure 3 we notice each test example has three contributing
features (which is the intention of the model) with magni-
tude being absent. Since CEN-CRF (3) was able to cor-
rectly classify these test examples, this proves explanations
can take on a much simplistic form while being accurate.

Also, it should be noted that (Al-Shedivat et al., 2017) ran
a similar heat-map analysis, but they selected to analyze a
finite number of weights and mapped the magnitude over-
time across a single training example, while our analysis
selects to view all weights at a given time point.
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Figure 2. Heat map of weights over 20 randomly selected test ex-
amples

Figure 3. Features used as explanations over 20 randomly selected
test examples

7. Conclusion
We used decision rules over interpretable features as the
explanations for the CEN framework, and tested it on three
separate classification tasks: survival analysis on SUP-
PORT2, image classification on MNIST, and sentiment
prediction on IMDB movie reviews.

Our results suggest that a key requirement for good perfor-
mance of the model when using decision rules as the ex-
planations is that the interpretable features should be as in-
formative as possible, as the decision rules cannot contain
too many features for space and efficiency reasons. This
suggests that expert knowledge in crafting the interpretable
features would be useful if trying to use decision rule ex-
planations.

While our results were in general worse than the original
CEN models, based on our qualitative analysis, we believe

that using decision rules as explanations potentially gives
much more interpretable decisions, even compared to lin-
ear models, especially when there are a large number of
interpretable features.
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Assume the contextual encoder gives us some encoding φ.
One way we could adapt Bayesian Rule Lists (BRL) to
CEN is to use the encoding to output a decision list d that
maximizes the probability of the training data:

d̂ = fψ(φ,x,A) = arg max
d

p(y | d)

= arg max
d

N∏
i=1

p(yi | d)

where ψ are the parameters of f , and

x = {xi}Ni=1

y = {yi}Ni=1

A = {a1, ..., aL} (mined antecedents using FPGrowth)

d = (a(1), a(2), ..., a(m)) (ordered subset of A)

We propose using a recurrent neural network (RNN) as fψ .
RNNs (and similar models like LSTMs) take in a sequence
of inputs one at a time, modifying an internal hidden state,
which is used to output a sequence one at a time. For now,
we propose simply usingφ at each timestep. We could also
use the previously generated antecedent as the input for the
next timestep instead.

At each timestep, the RNN outputs a vector et, which we
use to select the next antecedent to output. This requires an
encoding for each antecedent. Given x and A, define

Sij = 1[xi satisfies aj ]

So S ∈ {0, 1}N×L is a binary matrix that indicates whether
some input xi satisfies some antecedent aj . Then each
column S·j ∈ {0, 1}L could be an encoding for each an-
tecedent.

Given S and et, we compute a score vector u ∈ RL over
all antecedents using some function h (that might have
learnable parameters). For example, for a linear regression
model,

u = h(S, et) = Wh

 — et —

S
...

— et —

 + bh

Then we select the best antecedent a(t) = arg maxa ua.

Given the output list of antecedents d, we can compute
log p(y | d), which we then optimize using SGD.

In summary:

1. Obtain encoded context φ = gw(c).

2. Obtain antecedent set A. We use the FP-Growth fre-
quent itemset mining algorithm (Borgelt, 2005).

3. Compute S from x and A.

4. Use an RNN-type network and S to output decision
list d = fψ(φ, S) (= fψ(φ,x,A)).

5. Repeat step 4, optimizing log p(y | d).

To prevent repeated antecedents in d, we apply a mask to
u to zero-out the scores for antecedents that have already
been selected.

Given d, we obtain the associated multinomial
parameters (θ1, ...,θm) for each a(m) by fol-
lowing the same procedure as for BRLs: Let
Bij = 1[xi satisfies a(j) and not a(1), . . . , a(j−1)].
So B ∈ {0, 1}N×m, and each row of B has exactly one
value of 1. Then, θj ∼ Dirichlet(α +

∑N
i=1Bij), where

α is a prior (Letham et al., 2015).

Then, we can derive log p(y | d):

p(yi | d, xi) =

m∏
j=1

[p(yi | θj)]Bij

=

m∏
j=1

[
k∏

`=1

(θj`)
1[yi=`]

]Bij

log p(yi | d, xi) =

m∑
j=1

Bij

k∑
i=1

1[yi = `] log θj`

=

m∑
j=1

Bij log θj(yi)

log p(y | d) =

N∑
i=1

m∑
j=1

Bij log θj(yi)

B. Variational Contextual Bayesian-Rule-List
Autoencoder

The joint probability distribution of BRL-CEN is

p(y,θ, d | x, c, α) = p(y | θ)p(θ | x, d, α)p(d | c)

Propose variational posterior

q(θ, d) = q(θ | γ)q(d | δ)

The ELBO is given by

Eq[log p(y,θ, d)]− Eq[log q(θ, d)]

=Eq[log p(y | θ,x, d)] + Eq[log p(θ | α)]

+ Eq[log p(d | c)]− Eq[log q(θ)]− Eq[log q(d)]

Calculating the expected log-likelihood involves enumerat-
ing all possible lists, which is computationally expensive.
Hence, we propose to approximate the expectation term by
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randomly sampling a subset of the lists at each update step.
Moreover, we propose to use an RNN for posterior infer-
ence of d. For simplicity, we choose uniform prior on d,
although a poisson prior on the length of d is also desir-
able.

The inference steps are given below:

• At each update step, randomly draw rule lists from
antecedents, D

• compute posterior likelihood q(d) for each d in D

• γ ←− arg maxEq[log p(θ|α)] − Eq[log q(θ)] +∑
d∈D log p(y | θ,x, d)q(d)

• δ ←− arg max
∑

d∈D log p(y|θ,x, d)q(d; δ) +
log p(d|c)q(d; δ)− log q(d; δ)q(d; δ)

Note that δ is the parameters of an RNN.


