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Abstract
Voice Assistants (VAs) such as Amazon Alexa,
Google Assistant rely on wake word detection to
respond to people’s commands, which could po-
tentially be vulnerable to audio adversarial exam-
ples.

In this work, we target our attack on the wake-
word detection system, and our goal is to jam
the model with some inconspicuous background
music, so as to deactivate the VAs while our au-
dio adversary is present. We reverse-engineered
the wake-word detection system used in Ama-
zon Alexa based on recent publications. We
trained emulated models with different assump-
tions and tested against the real Alexa in terms
of wake-word detection accuracy to measure the
fidelity of our models. Then we computed our
audio adversaries with consideration of Expecta-
tion of Transformation and we implemented our
audio adversary with a differentiable synthesizer.
Next, we verified our audio adversaries digitally
on hundreds of samples of utterances collected
from the real world, we can effectively reduce
the recognition accuracy of our emulated model
from 86% to 12%. Finally, we test our audio ad-
versary over the air, and verified it works reason-
ably well against Alexa.

1. Introduction
Adversarial attacks on machine learning systems are a topic
of growing importance. As machine learning becomes
ever more present in all aspects of modern life, concerns
about safety tend to also gain prominence. As such, recent
demonstrations of the easiness with which machine learn-
ing systems can be “fooled” have caused a strong impact in
the field and in the general media. Systems that use voice
and audio such as Amazon Alexa, Google Assistant, and
Microsoft Cortana are growing in popularity. The hidden
risk of those advancements is that those systems are poten-
tially vulnerable to adversarial attacks from an ill-intended

third-party. Despite the recent growth in consumer pres-
ence of audio-based artificial intelligence products, com-
pared to the image and language domains, attacks on audio
and speech systems have received much less attention so
far.

Despite a number of works recently attempting to cre-
ate adversarial examples against ASR systems Carlini
& Wagner (2018); Schonherr et al. (2018); Qin et al.
(2019), robust playable-over-the-air real-time audio adver-
sary against ASR system still does not exist. Meanwhile,
there exists no adversary that can be played from a differ-
ent speaker rather than the source. Moreover, Voice Assis-
tants (VAs) such as Amazon Alexa, Google Assistant are
well-maintained by the infrastructure teams, which enable
them to retrain and redeploy a new model weekly on their
cloud back-end. A Robust audio adversary that can con-
sistently work against these ASR systems are almost im-
possible to craft not only due to lack of knowledge of the
backend models’ gradients, but also due to the challenging
nature of the task.

However, all the existing VAs rely on wake word (WW)
detection to respond to people’s commands, which could
potentially be vulnerable to audio adversarial examples. In
this work, rather than directly attacking the general ASR
models, we target our attack on the WW detection system.
WW detection models always have to be stored and ex-
ecuted on-board within a smart-home hardware which is
usually very limited in terms of computing power. Besides,
updates to the model is infrequent and way more difficult.
Thus, our proposed attack could be particularly more dam-
aging. Our goal is to jam the model so as to deactivate the
VAs while our audio adversary is present. Specifically, we
create a parametric attack that resembles a piece of back-
ground music, making the attack inconspicuous to humans.

We reverse-engineered the wake-word detection system
used in Amazon Alexa based on latest publications on the
architecture (Wu et al., 2018). We collected 100 samples of
”Alexa” utterances from 10 people and augmented the data
set to 20x by varying the tempo and speed. We created a
synthetic data set using publicly available data sets as back-
ground noise and negative speech examples. We created a
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synthetic dataset by adding ”Alexa” and other utterances
onto background noises. This collected database is used to
train and validate our emulate model. We trained emulated
models with different configurations and evaluated over the
test set.

We implemented two types of attack. One approach is the
vanilla projected gradient descent (PGD), which allows the
attack model to modify the raw audio sequence in arbitrary
way within the allowable frequency band. The other at-
tack is parameterized by our threat model, PySynth Doege
(2013), a music synthesizer. Such threat model disguises
our attack in a sequence of inconspicuous background mu-
sic notes.

Here are our main contributions:

1. We create a threat model in audio domain that allows
us to disguise our adversarial attack as a piece of mu-
sic playable over the air in the physical space.

2. In order to make our adversarial example work in the
physical world, we took the expectation of transform
from digital audio to physical sound into account.
We considered psychoacoustic effects in human hear-
ing perception, we also considered room impulse re-
sponse.

3. Our adversarial attack is jointly optimizing the attack
nature while fitting the threat model to the perturba-
tion achievable by the microphone hearing range of
Amazon Alexa, this is challenging since our attack
budget is very limited compared with previous works.

4. Our adversarial attack works reasonably well in the
real world separate source setting, which is the first
real-time attack against Alexa to our knowledge.

2. Related Works
Most current adversarial attacks work by trying to find a
way to modify a given input (hopefully by a very small
amount) in such a way that the machine learning system’s
proper functioning is disrupted. A classic example is to
take an image classifier and modify an input with a very
small perturbation (difficult for human to tell apart from
original image) that still changes the output classification
to a completely distinct (and incorrect) one.

To achieve such a goal, the general idea behind many of
the attack algorithms is to optimize an objective that in-
volves maximizing the likelihood of the intended (incor-
rect) behavior, while being constrained to a small pertur-
bation. For differentiable systems such as deep networks,
which are the current state of the art for many classifica-
tion tasks, utilizing gradient-based methods is a common
approach. We describe such methods and their relation to

our work in more depth in Section 3.2. In this work, our
target of attack would be WW systems.

Adversarial attacks were initially introduced for images
Szegedy et al. (2013) and have been studied the most in
the domain of computer vision (Nguyen et al., 2015; Ku-
rakin et al., 2016; Moosavi-Dezfooli et al., 2016; Elsayed
et al., 2018). Following successful demonstrations in the
vision domain, adversarial attacks were also successfully
applied to natural language processing (Papernot et al.,
2016; Ebrahimi et al., 2018; Reddy & Knight, 2016; Iyyer
et al., 2018; Naik et al., 2018). This trend gives rise to
defensive systems such as (Cisse et al., 2017; Wong &
Kolter, 2018), and thus provides a guideline to the commu-
nity about how to build robust machine learning models.

However, attacks on audio and speech systems have re-
ceived much less attention so far. Only as recently as last
year, Zhang et al. (2017) did a pioneering proof-of-concept
work that proved the feasibility of real-world attacks on
speech recognition models. This work, however, had a
larger focus on the hardware part of the Automatic Speech
Recognition (ASR) system, instead of its machine learning
component. Not until very recently, there was not much
work done on exploring adversarial perturbation on speech
recognition model. Carlini et al. (2016) was the first to
demonstrate that attack against HMM models are possible.
They claimed to effectively attack based on the inversion
of feature extractions. Nevertheless, this work was prelim-
inary since it only showcased a limited number of discrete
voice commands, and the majority of perturbations are not
able to be played over air. As a follow-up work, Carlini
& Wagner (2018); Qin et al. (2019) showcased that curated
white-box attack based on adversarial perturbation can eas-
ily fool the Mozilla speech recognition system1. Again,
their attacks would only work in with their special setups
and are very brittle in real world. More recently, Schon-
herr et al. (2018) attempted to psycho-acoustic hiding to
improve the chance of success of playable attacks. They
claimed to verified their attacks against the Kaldi ASR sys-
tem, whereas the real-world success rate is still not satisfy-
ing, and the adversary itself cannot be played from a dif-
ferent source. Rather than failing to exploit the robust ASR
systems, our proposed attack targets at the more manage-
able Wake Word detection system, and really demonstrates
that it can be playable over the air.

Currently, the techniques used in attacking audio/speech
systems are very similar to that are used in attacking im-
age/vision system, which is dominantly gradient based at-
tacks. Fast Gradient Sign Method (FGSM) is simple and ef-
fective method (Goodfellow et al., 2014). Projected Gradi-
ent Descent (PGD) is a more robust and generalizable form

1Examples can be found at https://nicholas.
carlini.com/code/audio_adversarial_examples

https://nicholas.carlini.com/code/audio_adversarial_examples
https://nicholas.carlini.com/code/audio_adversarial_examples
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of attack that was first introduced in (Madry et al., 2017).
In order to improve the robustness of the attacks, more
work is seen going into exploring the universal perturba-
tion (Moosavi-Dezfooli et al., 2017). Meanwhile, there is
also a growing effort to explore black-box attack on audio
systems (Taori et al., 2018). Our theoretical foundation in
this work does not differ much from these previous works,
which mostly involves first-order gradient based methods.
However, we made a lot of improvements to enable it works
in real-time and real-world.

3. Methods
3.1. Baseline Emulate Model

WW detection is the first important step before any inter-
actions with distant speech recognition. However, due to
the compacted space of embedded platform and need for
quick reflection time, models of WW detection are usually
compact and vulnerable to be attacked. Thus, we target our
attack on the wake-word detection function.

The architecture of Amazon Alexa was published in (Pan-
chapagesan et al., 2016; Kumatani et al., 2017; Guo et al.,
2018), allowing us to emulate the model for white-box at-
tack. We implemented the time-delayed bottleneck high-
way networks with Discrete Fourier Transform (DFT) fea-
tures following the details in (Guo et al., 2018), which is
the most up-to-date information on the model architecture.

The architecture of the emulate model is shown in Figure
1. The model contains a 4-layer highway block as feature
extractor, a linear layer acting as the bottleneck, a temporal
context window that concatenates features from adjacent
frames, and a 6-layer highway block for classification. Fi-
nally, we use a cross-entropy loss for classification.

Highway networks were proposed in (Srivastava et al.,
2015) as an effective way to deal with the vanishing gradi-
ent problem common in deep neural networks. The output
of layer l in the highway block can be expressed by two
gating functions, as shown by Eq. 1.

hl = f(hl−1)T (hl−1) + hl−1C(hl−1) (1)

The carry (C) and transform (T ) gate functions are defined
by a nonlinear layer with Sigmoid function, as shown by
Eq. 2.

T (hl−1) = σ(WThl−1 + bT )

C(hl−1) = σ(WChl−1 + bC) (2)
f(hl−1) = σ(Wlhl−1 + bl)

Figure 1. Wake-word Detection Network Architecture (Guo et al.,
2018)

Figure 2. Hidden Markov Model for Speech/Non-speech detec-
tion
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3.2. Projected Gradient Descent for Adversarial
Attacks

Normally, classification problems are formulated as a min-
imization of Ex,y∼D[L(f(x), y)] where L is the loss func-
tion, f is the classifier mapping from input x to label y,
and D is the data distribution. We evaluate the quality of
our classifier based on the loss, and a smaller loss usually
indicates a better classifier. However, this standard formu-
lation could be vulnerable against a perturbed input x′, and
thus we need a more stringent formulation of classification.

We form Ex,y∼D[maxx′∈C(x) L(f(x′), y)], where C(x) is
our predefined perturbation set which we injected pertur-
bation but did not change the true label. In order to learn
such a robust classifier, we still try to minimize the empiri-
cal loss, and the only difference is there is perturbation ap-
plied: minθ

1
n

∑n
i=1[maxx′∈P (xi) L(fθ(x

′), yi)]. This for-
mulation brings about a mini-max problem, but since we
are focusing on attack in this work, we only focus on the
inner maximization.

We are thus looking to find an example x′ that maximizes
the loss of the classifier, that is max′x L(f(x′), y). In a
completely differentiable system, an immediately obvious
initial approach to this would be to use gradient ascent in
order to search for an x′ that maximizes this loss.

However, for this maximization to be interesting both prac-
tically and theoretically, we need x′ to be close to the
original datapoint x, according to some measure. It is
thus common to define a perturbation set C(x) that con-
strains x′, such that the maximization problem becomes
maxx′∈C(x) L(f(x′), y). The set C(x) is usually defined
as a ball of small length (of either `∞, `2 or `1) around x.

Since we have to solve such a constrained optimization
problem, we cannot simply apply the gradient descent
method to maximize the loss, as this could take us out of
the constrained region. One of the most common methods
utilized to circumvent this issue is called Projected Gradi-
ent Descent (PGD). To conform to the usual literature on
gradient descent methods, we will invert the sign of the
aforementioned problem to write it as a minimization, i.e.,
minx′∈C(x)−L(f(x′), y).

The constrained maximization problem described
above can be rewritten as the unconstrained problem
min′x−L(f(x′), y) + IC(x)(x

′), where IC(x) is the indica-
tor function on C(x), with value ∞ outside the set C(x)
and 0 inside it. Since we have a differentiable function
L and a function IC(x), we can frame PGD as a case of
proximal gradient descent. We thus have, for step size t,

proxt(x
′) = argmin

z
‖x′ − z‖2 + IC(x)(z) (3)

proxt(x
′) = argmin

z∈C(x)

‖x′ − z‖2 = PC(x)(x
′) (4)

where PC(x) is the projection operator onto C(x). With
this proximal operator, our proximal gradient descent up-
date step is defined by x′+ = PC(x)(x

′ + t∇L), that is, we
first take a gradient step, then project onto the set C(x). In
sum, such an optimization procedure allows us to search
for inputs x′, constrained to be in the set C(x) near x, that
cause the machine learning system to produce an output y
with high loss.

3.3. Psychoacoustic Model

Our ultimate task is to deceive the voice assistant with
voice that similar to human hearing. So the definition of
the similarity between our modified sound and the original
sound should be consistent to how humans perceive various
sounds, which is the psychoacoustic definition. The princi-
ples of the psychoacoustic model are similar to what used
in the compression process of audio files, e.g. compress
the loose-less file format ”wav” to the loosely file format
”mp3”. In this process, the information carried by the au-
dio file is changed while human’s ears is hard to tell the
differences between these two sounds.

Specifically, a louder signal (the “masker”) can make other
signals at nearby frequencies (the “maskees”) impercepti-
ble (Lingaiah, 2004). When we add an perturbation δ, the
normalized PSD estimate of the perturbation p̄δ(k) is un-
der the frequency masking threshold of the original audio
ηx(k),

p̄δ(k) = 96−max
k

px(k) + pδ(k) (5)

where pδ(k) = 10 log10 | 1N sδ(k)|2, px(k) =
10 log10 | 1N sx(k)|2 are power spectral density esti-
mation of the perturbation and the original audio input.
sx(k)) is the kth bin of the spectrum of frame x. This
results in the loss function term:

`η(x, δ) =
1

|N2 |+ 1

|N2 |∑
k=0

max {p̄δ(k)− ηx(k), 0} (6)

Exploiting the psychoacoustic model of human hearing al-
lows the adversary to be injected into the signal at so-called
critical bands which, when present with other frequency
components, are inaudbile to the listener. Since speech is
dynamically changing throughout the temporal domain, the
psychoacoustic analysis is typically carried out on short
segements, or frames, of audio. The raw waveform x is
segmented into N frames of length L given as

xn(kT ) = x(kT + nL)wL(t− nL) k ∈ [0, N − 1] (7)

where n is the frame index and wL is a window function.
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The psycho-acoustic model used is based on the MPEG-
ISO (ISO/IEC-11172-3:1993) and was included in attacks
presented in (Schonherr et al., 2018; Qin et al., 2019). We
will not explain in detail the weighting generated by the
psycho acoustic model and were refer the reader to (Painter
& Spanias, 2000; Defraene et al., 2012; Carlini & Wagner,
2018) but it consists of 5 steps:

1. The power spectral density (PSD) of the signal is nor-
malized to standard sound pressure level (SPL). This
is important as the signals have various amplitudes
based on room dynamics, microphone responses and
so forth.

2. Once the PSD is estimated and the signal has been nor-
malized the so-called tonal and non-tonal maskers are
identified. These maskers represent parts of the hu-
man auditory system that will mask other frequencies
when presented simultaneously.

3. The number of maskers is then reduced, or decimated,
by comparing the tonal and non-tonal maskers with a
sliding window scheme.

4. The individually masking thresholds and then used to
generate a masking pattern that encompasses the ad-
jacent frequencies affected by the tonal and non-tonal
maskers.

5. The global masking threshold is the then found by
combining the masking thresholds from the previous
stem. This global threshold then represents a percep-
tual weighting that is based on the power and fre-
quency components of the signal and the psychoa-
coustic properties of the human auditory system.

The resulting global masking threshold t can then be found
for each frame N and frequency f , tn(f) ∈ [0, fs2 ], where
fs is the sampling frequency.

Figure (3) shows the absolute threshold of hearing com-
pared to that of the global masking threshold calculated for
a single frame. In a normal environment, the human audi-
tory has a peak response between roughly 3kHz and 4kHz.
This means in a quiet environment that if an adversary were
to be added around these frequencies with a level greater
than -5 dB SPL (less than the sound of light leaf rustling) it
would be perceptible. However, if other tones are present
are presented simultaneously the create a masking effect
which allows for a higher amount of noise to be added that
would be imperceptible. In the case of Figure (3), by ex-
ploiting the the sounds present in analysis frame, noise can
be added to higher than 40 dB SPL in some bands which is
equivalent to a normal conversational level of sound.

Figure 3. The absolute threshold of hearing compared to the
threshold of speech frame where a psychoacoustic model is used
to extract a global masking threshold.

3.4. Expectation of Transform

When using the voice assistant in a room, the real sound
caught by the microphone includes both the original sound
speaked by human and the reflected sound. The ”room im-
pulse response” function explained the transform of origi-
nal audio and the audio caught by the microphone. There-
fore, to make our adversarial attack effective in the physical
domain, i.e. attack the voice assistant over the air, it is nec-
essary to consider the room impulse response in our work.

we use the classic Image Source Method introduced in
(Allen & Berkley, 1979; Scheibler et al., 2018) to create
the room impulse response r based on the room configura-
tions (dimension, source location, reverberation time).

t(x) = x× r (8)

Here, x denotes clean audio and ∗ denotes convolution op-
eration. The transformation function t follows a chosen
distribution T over different room configurations.

3.5. Adversarial Audio Synthesizer(Threat Model)

To perform the adversarial attack on the audio domain, we
introduce a parametric model to define a realistic construc-
tion of our adversary δθ parameterized by θ.

We use a music synthesizer, Pysynth(Doege, 2013) as our
parametric attack model. We used karplus-strong algo-
rithm to synthesis guitar-timbre sound. The mechanism of
the algorithm could be referred to Sullivan (1990). The
gist is to generate a sequence of guitar notes with given
BeatsPerMinute(BPM), Sampling Frequency, and volume,
and the algorithm could be regarded as an addition of sine
waves. We implemented this algorithm using the auto-
differentiation toolkit PyTorch. All of these parameters are
referred to as θ, they are used to generate this piece of mu-
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sic, and they are optimizable to generate our adversarial
music.

3.6. Loss Formulation

To attack the voice assistant in the digital domain, one can
use the method illustrated in the Section 3.2 to solve the
constrained maximization optimization problem. The loss
function of the vanilla PGD in the is :

max
z∈C(x)

`(x, y) = `net(f(x′))− α‖x′ − z‖2 (9)

In the audio domain, we aim at attack the voice assistant via
parametric model and considering psychoacoustic effect, as
illustrated in Section 3.3 and Section 3.5. The loss function
of attack in audio domain is

max `(x, δθ, y) = `netf(x+ δθ)− α · `η(x, δ) (10)

Our final loss formulation is attack the voice assistants over
the air. This is the attack under the physical condition, we
want to maximize it to craft our adversary:

max `(x, δθ, y) = Et∈T [`netf(t(x+ δθ))− α · `η(x, δ)]
(11)

Here, y is the groud truth label of the audio, and `net is the
original loss of the emulated model for wake word detec-
tion.

4. Experiments
4.1. Datasets

We collected 100 positive speech samples (speaking
”Alexa”) from 10 peoples (4 males and 6 females; 4 na-
tive speakers of English, 6 non-native speakers of English).
Each person provided 10 utterances, under the requirement
of varying their tone and pitch as much as possible. We
further augmented the data to 20x by varying the speed and
tempo of the utterance, resulting in 2000 samples.

We used publicly available data 2 for background noise and
negative speech examples (speak anything but ”Alexa”).
We created a synthetic data set by randomly adding pos-
itive and negative speech examples onto a 10s background
noise and created binary labels accordingly. While ”hear-
ing” positive speech examples, we set label values as 1.
One sample of the spectrum figure and the corresponding
label is shown at Figure 4.

To train the speecn/non-speech detection model, we used
large corpus including LibriSpeech ASR corpus (1000

2The LJ Speech Dataset https://keithito.com/
LJ-Speech-Dataset/

Figure 4. Collected raw data sample

hours) 3, Mozilla common voice corpus (582 hours) 4,
Switch Board Corpus (260 hours) 5.

4.2. Baseline Model

Compare to the original implementation in (Guo et al.,
2018), we simplified our loss function. We trained the
model as a binary classification problem over time se-
quence, distinguishing between wake-word and non wake-
word. The performance is evaluated over a reserved test
set. Care has been taken to ensure that augmented copies
of the same raw audio sample will not occur in the train set
and test set simultaneously. Common performance metrics
is listed in Table 1. Figure 5 shows the Detection Error
Tradeoff (DET), zoomed in to the same scale as reported
in (Guo et al., 2018). The curve is visually comparable to
the results in (Guo et al., 2018). Unfortunately, metrics in
(Guo et al., 2018) were reported in relative terms compared
to other models. This makes it difficult for us to directly
benchmark our model against theirs.

4.3. Vanilla Projected Gradient Descent

Our first approach is vanilla projected gradient descent,
which allows the attack model to modify the raw audio se-
quence in arbitrary way, using the approach described in
Section 3.2. We use the emulate model developed in Sec-
tion 4.2 to estimate the gradient and maximizes the classi-
fication loss following Eq. 3.2.

The performance metrics of the emulate model on adver-
sary examples are also shown in Table 1. An example of
modified adversarial attack example is shown in Figure 6.

While the vanilla PGD approach manages to greatly de-

3http://www.openslr.org/12/
4https://voice.mozilla.org/en
5https://catalog.ldc.upenn.edu/LDC97S62

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
http://www.openslr.org/12/
https://voice.mozilla.org/en
https://catalog.ldc.upenn.edu/LDC97S62
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Figure 5. Detection Error Tradeoff Curve

Models Precision Recall F1 Score AUC

Emulate Model 0.98 0.98 0.98 0.997
Vanilla Attack 0.38 0.28 0.32 0.223
Parametric Attack 0.12 0.10 0.11 0.15

Table 1. Performance of models

crease the detection performance, this attack model is not
practical for attack on audio domain. To make the point,
we highlight the difference between the raw audio data and
the adversarial example, i.e. the change made to the spec-
trogram by the attack model in Figure 7. The attack model
smears the entire spectrogram with emphasis on certain fre-
quency bands. Such approach is effective when we evalu-
ate it over the digital domain, but it is not playable over
the air. Furthermore, a noise at a fixed frequency is sus-
picious, which enable people to identify the source of the
attack easily.

4.4. Parametric Adversarial Attack

Using the loss function defined by Equation 10 and para-
metric method illustrated in Section 3.5, we performed the
parametric attack. An example of the parametric attack is
provided in Figure 8. It highlights the difference of para-
metric attack with and without The comparison of para-
metric adversarial attack in audio domain and the vanilla
adversarial attack in digital domain is shown in Table 1.

5. Conclusion and Discussion
As a first step, we created an emulate model for the WW
detection on Amazon Alexa following the implementation
details published in (Guo et al., 2018). The model is the
basis to design our white-box attacks. We collected aug-
mented and synthesize a data set for training and testing.
Our model achieved qualitatively comparable performance
to that in (Guo et al., 2018) over our test set.

Figure 6. Vanilla Adversarial Attack Example

Figure 7. Changes Made by the Attack Model



Real world Audio Adversary against Wake-word Detection Systems

Figure 8. Parametric Adversarial Attack Example, the sample in
the upper figure is the one with psychoacoustic effect considera-
tion, and the lower one did not consider it. As we can observe, if
consider psychoacoustic masking, the adversary would be much
more concentrated in certain frequency bands without smearing
the entire spectrum.

We implemented two types of attack. One approach is the
vanilla PGD, which allows the attack model to modify the
raw audio sequence in arbitrary way within the allowable
frequency band. The other attack is parameterized by our
threat model, PySynth Doege (2013), a music synthesizer.
Such threat model disguises our attack in a sequence of
inconspicuous background music notes.

Our work showed the potential of adversarial attack in the
audio domain, specifically, for the wake-word detection
widely applied in voice assistants. This paper illustrated
steps to achieve the goal of attacking in the physical space:
reverse-engineed the emulate model, attack from the digital
domain, attack from the audio domain, and finally attack in
the physical space.

6. Future Work
6.1. Over-the-Air Attack

The ultimate goal is to create a threat model that would al-
low us to play our audio adversarial example over the air in
the physical space. To the best of the authors’ knowledge,
there is no adversarial attack on ASR that could be played
on the air. Our second approach disguises the attack in a
sequence of inconspicuous music notes. However, a para-
metric model alone is not sufficient to achieve the objective
of over-the-air attack.

We also need to take into account the transformation from
digital audio to physical sound. The adversarial examples
will be implemented by jointly optimizing the attack nature
while fitting the threat model to the perturbation achievable
by the microphone hearing range through verbal command,
using the approach described in Section 3.3 and 3.4.

6.2. Black-box Attack

In order to explore attacks on wake-word detection model,
we developed an implementation of PGD suitable for ap-
plications in the audio domain. However, we were very
limited by the number of the samples we can collect for the
WW compared to that of Amazon Alexa, and we were also
constrained by our heuristic assumptions while emulating
the Alexa model. This naturally give rise to a black-box
settings where it calls for zero-order methods such as ban-
dit algorithm to tune our perturbation more directly.
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