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Abstract
In typical text generation settings, there exists a
discrepancy between the training objective and
evaluation criteria. Generally, researchers train
text generation models by maximizing for log-
likelihood on cross-entropy while evaluating on
a separate metric, such as BLEU score, that can-
not be optimized by evaluating gradients. While
some work has been done to use policy gradi-
ents to directly optimize for non-differentiable
rewards, these methods are difficult to train due
to the amount of computation required. Instead,
we focus on an alternative method of approx-
imating for BLEU by evaluating Differentiable
Expected BLEU (DEBLEU). We evaluate our
method on machine translation, while comparing
results to both cross-entropy and policy gradient
methods. Furthermore, we provide empirical re-
sults regarding the computational benefits of DE-
BLEU vs. policy gradients. Lastly, we focus on
text-style transfer and argue that DEBLEU loss is
a more suitable objective than cross-entropy for
this task.

1. Introduction
In recent years, the natural language processing community
has developed growing interest in text generation. Strong
improvements have been made across a wide variety of
tasks, such as machine translation and dialog systems. In
general, researchers have tackled text generations tasks by
maximizing log-likelihood during training. However when
actually evaluating the quality of their experiments, re-
searchers use metrics such as BLEU score (Papineni et al.,
2002). Because of the popularity of BLEU scores in NLP,
addressing this inconsistency between the training objec-
tive and evaluation metric is a well-researched area, and
finding a solution can have significant impact on a wide
variety of tasks popular today.

For our project, we explore ways of directly optimizing for
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BLEU scores in the context of text generation. Therefore,
the main issue we need to overcome is the fact that BLEU is
a non-differentiable function, making it impossible to apply
gradient descent. The main problem we wish to tackle then
is to explore methods of approximating this objective.

Currently, there exists some work that attempts to address
the same issue. Borrowing techniques from reinforcement
learning, Ranzato et al. uses a policy gradient with the
BLEU score as a reward to optimize for this metric for text
generation. However, this leads to a major challenge, as
the sampling required for this technique is expensive and
difficult. Moreover, the gradient estimation itself suffers
from high variance. Instead, we would like take an al-
ternative approach of making soft approximations to the
n-gram matching counts that is used to calculate BLEU
scores. In doing so, we use a differentiable approxima-
tion, DEBLEU, and compare results to both policy gradi-
ent methods and state-of-the-art techniques that maximize
log-likelihood (Wang et al., 2019).

In our project, we would like to study the advantages
of directly optimizing for BLEU scores rather than log-
likelihood in the context of text style transfer. In our ex-
periments, we first show that approximating BLEU using
DEBLEU is computationally more efficient than using pol-
icy gradient methods. Second, we test that DEBLEU is
resilient to perturbations in the ground truth sentence when
compared to cross-entropy loss, which can be very sensi-
tive to adding, deleting, or replacing tokens. Finally, we
demonstrate that this property is useful in the context of text
style transfer tasks, where one may try to modify charac-
teristics such as sentiment. In such cases where modifying
style may only require changes to a few tokens, optimiz-
ing for DEBLEU loss is preferable to maximum likehood
estimation.

2. Background and Related Work
2.1. BLEU

We first discuss the BLEU score, which is a common metric
that researchers use to evaluate natural language process-
ing systems (Papineni et al., 2002). Papineni et al. define
BLEU as a weighted geometric mean of n-gram precision
scores, defined as
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precn =
∑

s min(C(s,y),C(s,y∗))∑
s C(s,y)

where y is the hypothesis sequence, y∗ is the ground-truth
sequence, s is an n-gram subsequence of y, and C(s,y) is
the number of times s appears in y. Then BLEU is formu-
lated as

BLEU = BP exp (
∑N
n=1 wn log precn)

BP stands for brevity penalty, which penalizes sequences
that are too short. N determines how many n-gram
precision-scores to use. Finally, wn is the weight of each
precision score, which often is set to 1/N .

BP =

{
1 T > T ∗

e(1−r/c) T ≤ T ∗

Where T is the prediction sequence length and T ∗ is the
reference sequence length.

2.2. Optimizing BLEU

Ranzato et al. directly optimizes for their final evalua-
tion metric by borrowing ideas from reinforcement learn-
ing. Their proposed algorithm, Mixed Incremental Cross-
Entropy Reinforce (MIXER) is adapted from the REIN-
FORCE algorithm (Williams, 1992), which is suitable to
this problem since it does not require rewards to be differ-
entiable. In their work, Ranzato et al. treat the text genera-
tion model as an agent, the parameters of model as the pol-
icy, and each generated word as an action. Then at the end
of each generated sequence, MIXER calculates the BLEU
score as the observed reward.

However, one major challenge of using the policy gradient
is that the action space for text generation is very large,
making training very difficult. Therefore to ameliorate
the problems of convergence, MIXER trains an RNN with
cross-entropy for the task and uses this model as it’s initial
policy, rather than beginning with a random policy. In addi-
tion, MIXER employs an annealing schedule, which trains
the model to generate more stable sequences.

More recently, researchers have tackled this issue by mak-
ing BLEU differentiable. Recognizing that sampling pro-
cedure in reinforcement learning methods like MIXER are
computationally expensive, Zhukov et al. proposes op-
timizing for the lower bound of expected BLEU score.
Through a set of assumptions and derivations, Zhukov et al.
derive an expression that coincides with the exact value for
an individual n-gram matching score. Taking the product
of these for the aggregate n-gram scores used to calculate
BLEU, they are able to derive a lower bound that is dif-
ferentiable. They then run their method on toy tasks and
small translation tasks to make comparisons to reinforce-
ment learning approaches. Similarly, Casas et al. derive a

Figure 1. Diagram of a sequence-to-sequence architecture, which
uses a unidirectional, multi-layer RNN with an LSTM recurrent
unit. In this example, the model translates a source sentence ”I am
a student” into a target sentence ”Je suis tudiant” (Luong et al.,
2017).

differentiable version of BLEU by making an assumption
that hypothesis and ground truth sequences have the same
length. From this, they follow a series of matrix computa-
tions to calculate the BLEU score.

In addition, Yavuz et al. also attempt to solve this objec-
tive discrepancy problem between MLE and BLEU scores,
but rather than optimizing for BLEU itself, they introduce
a new objective (CaLcs) that also captures sequence level
structure similarity. This objective is an approximation
of the longest subsequence (LCS) metric, and rather than
completely replace log-likelihood, they add it on top as
an additional objective for text generation models by pre-
training using cross-entropy and continue training using the
CaLcs objective. Having bounded the approximation error
of LCS using CaLcs in their paper, Yavuz et al. then run
several experiments in abstractive summarization and ma-
chine translation, achieving increases in BLEU scores.

2.3. Machine Translation

Popular among machine translation tasks are sequence-to-
sequence networks, which uses an encoder-decoder frame-
work (Sutskever et al., 2014). This method uses a multi-
layered LSTM to map an input sequence to a vector and
then another LSTM to decode this vector into the target se-
quence. See Figure 1. Following this work, Bahdanau et al.
proposed a new method that adds attention to the sequence-
to-sequence model, having posited that the fixed-length
vector was causing a bottleneck. They showed that such
soft-alignments improves performance. More recently, re-
searchers have been able to achieve state-of-the-art results
in machine translation using Transformers, which forgo re-
current and convolutional neural network architectures for



Optimizing BLEU Scores for Improving Text Generation

Figure 2. z is the unstructured latent code c is the structured code
for sentence attributes to be controlled (Hu et al., 2017).

one based solely on attention mechanisms (Vaswani et al.,
2017).

2.4. Text Style Transfer

As stated previously, our main area of focus is text style
transfer, which we hypothesize that DEBLEU is more suit-
able for since it is less sensitive to token perturbations
than maximum likelihood estimation. We therefore hope
to run experiments adapted from recent text style trans-
fer techniques (Hu et al., 2017; Yang et al., 2018). Hu
et al. leverages VAEs for text generation. Using differ-
entiable approximations to discrete text examples, they are
able to define explicit constraints on attribute controls and
use VAEs with style discriminators to learn interpretable
sentence representations. Specifically, they show that they
are able to control sentiment and tense while generating
realistic sentence samples. Figure 2 provides a high-level
diagram of the architecture Hu et al. introduces.

For the generator, we have the loss LG = LV AE +
λcLAttr,c + λzLAttr,z . LV AE is the standard VAE loss
that minimizes cross-entropy. Given that c is your attribute
code (for example, sentiment label), z is the latent variable
learned by the VAE, and G̃τ (z, c) is the soft generated sen-
tence using Gumbel-softmax decoding (Jang et al., 2016),
we have then that

LAttr,c = E log qD(c|G̃τ (z, c))
LAttr,z = E log qE(z|G̃τ (z, c)

For the discriminator, we have the loss LD = Ls + λuLu,
where Ls is the cross-entropy loss for predicting the senti-
ment code using the input sentence and Lu is the cross-
entropy loss using noisy synthesized sentence-attribute
pairs generated by the model. Note that λc, λz , and λu
are all hyper-parameters used to weight each loss.

Finally given the above objectives, Hu et al. alternate be-
tween training the discriminator and generator until reach-
ing convergence.

Yang et al. tackles unsupervised text transfer using a differ-
ent approach. While Hu et al. uses a style classifier, Yang
et al. leverages adversarial training with a binary classi-

fier. However, unlike previous approaches that use a binary
discriminator, Yang et al. train a language model to that as-
signs a probability of how likely a sentence is real. Empir-
ically, they are able to achieve good results while eliminat-
ing the need for negative samples, thereby stabilizing train-
ing. In the context of sentence manipulation, they are able
to achieve better accuracy and language perplexity scores
when compared to the results in Hu et al..

3. Methods
3.1. DEBLEU

We first adapt the Differentiable Expected BLEU (DE-
BLEU) objective for our experiments (Wang et al., 2019).
In their work, Wang et al. leverages the sparsity of the
standard BLEU metric to derive an approximation that is
differentiable. Overall, we believe that optimizing this
metric will improve performance since we are directly
optimizing for BLEU score rather than some proxy (i.e.
cross-entropy). In addition, we expect faster training time
since calculating DEBLEU loss does not require sampling
needed in reinforcement learning (i.e. the policy gradient
method).

Following a common approach used to for the policy gra-
dient algorithm (Ranzato et al., 2015), Wang et al. begin
with the expected BLEU objective:

L = Epθ(y)[BLEU(y,y∗)]

Subsequently, Wang et al. approximate the expectation as
in (Zhukov et al., 2017):

L ≈ BP
∏N
n=1(Epθ(y) precn)

wn

where precn is the n-gram precision defined for the tradi-
tional BLEU score metric. Leveraging sparsity properties
of the n-gram precision, they approximate Epθ(y) precn,
which we denote as p̃recn.

p̃recn = 1
T−n+1

∑T−n+1
i=1 õn,i

where õn,i is defined as

õn,i = min

(
1,

v∗n,i
Ep(y¬i:i+n)vn,i

)
Note: in the following notation, Wang et al. enumerate
over token indices rather than use the conventional n-gram
formulation. Figure 3 provides a pictoral representation of
this indexing.

C (yi:i+n, y) =
∑T−n+1
i′=1 1 [yi′:i′+n = yi:i+n] , vn,i

C(yi:i+n, y∗) =
∑T∗−n+1
j′=1 1

[
y∗j′:j′+n = yi:i+n

]
, v∗n,i

To evaluate vn,i and v∗n,i, Wang et al. consider 3 cases
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Figure 3. An example value of yi:i+n. Here, i = 1 and n = 2,
where yi,i+n takes value of i am, which occurs twice in y (at
j = 1 and j = 8) (Wang et al., 2019).

when comparing yi′:i′+n and yi:i+n to calculate ui,j =
Ep(y¬i,i+n)1

[
yi′:i′+n = y∗j:j+n

]
1. The two refer to the same n-gram (i.e. i′ = i):

ui,j = 1

2. The two do no overlap (i.e., |i′ − i| ≥ n):

ui,j = p
(
yi′:i′+n = y∗j:j+n

)
3. The two overlap (i.e. 0 < |i′ − i| < n):

ui,j ≥ p
(
yi′:i′+n = y∗j:j+n

)
For case 3, we approximate ui,j ≈ p

(
yi′:i′+n = y∗j:j+n

)
,

giving us

∑T∗−n+1
j=1 min

1,
pθ(yi::+n=y∗j:j+n)

1+
∑T−n+1

i′=1
i6=i

pθ(yi′:i′+n=y∗j:j+n)


Finally taking the logarithm, we arrive at our loss function:

LDEBLEU = − logBP−
∑N
n=1 wn log p̃recn

3.2. Teacher Masks

As in (Hu et al., 2017; Wang et al., 2019), we resolve the
issue of backpropgating through discrete samples by us-
ing Gumbel-softmax decoding (Jang et al., 2016). This ap-
proach produces soft inputs for each sampled token, which
we use to calculate the DEBLEU loss and its gradients. In
practice however, Wang et al. found that replacing the hard
counts with probabilities used as soft counts generated er-
rors that accumulated over each token and caused instabil-
ity in the training.

To address this issue, Wang et al. introduce ”teacher
masks”, in which the soft input distribution pθ(yi, y1:i) is
replaced with the one hot representation of the ground-truth
token (see Figure 4). In their experiments, they gradually
annealed this mask pattern by increasing the proportion of

Figure 4. Depicts a 2:2 mask pattern, in which red lines represent
masked steps (in which one-hot ground truth tokens are used).
Otherwise, a Gumbel-softmax distribution output is used as a soft
token (Wang et al., 2019)

.

unmasked steps until eventually removing the masks alto-
gether (gradually increasing the difficulty of the optimiza-
tion problem). In our experiments, we use a (2:2) and
(4:2) mask pattern, which we remove after a set number
of epochs.

3.3. Controllable Text Generation

We provide a high-level overview for our style-transfer task
methodology. Our model follows the architecture in (Hu
et al., 2017) with some simplifications. First, we do not use
samples generated by the decoder to train our model. Thus,
we drop the terms λzLAttr,z and λuLu from the losses LG
and LD respectively. Next, we a use an RNN encoder and
an attentional RNN Decoder for our generator. Following
Yang et al., we evaluate the generated sentences on BLEU
score, as opposed to just the attribute code prediction accu-
racy. This evaluation serves to measure how realistic the
generated sentences are and how similar they are to the
original inputs.

4. Experiments
We first present the key questions that we wish to answer
using the results of our experiments.

1. Does optimizing DEBLEU loss improve performance
compared to cross-entropy optimization and using a
policy gradient?

2. Does optimizing DEBLEU loss require less computa-
tion (which we measure with training time)?

3. Is DEBLEU loss less sensitive to sequence perturba-
tions when compared to cross-entropy?

4. If so, does this property of DEBLEU loss translate
well to text style transfer tasks?
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Method de-en en-fr
Cross-entropy 22.78 38.13
Policy Gradient 23.35 39.45
DEBLEU 24.12 39.65

Table 1. BLEU score results for neural machine translation tasks
on the test sets, averaged over 5 runs. In our baseline model,
we use cross-entropy loss and compare it to the policy gradient
method and to our method using DEBLEU loss. We evaluate
on the IWSLT14 German-to-English (de-en) and the English-to-
French (en-fr).

4.1. Machine Translation

4.1.1. RESULTS

We first replicate results in (Wang et al., 2019), using
a sequence-to-sequence model with attention as our base
model, pretraining using cross-entropy loss and then fur-
ther training using our approximated DEBLEU objective.
Beam search is used for decoding. We also compare our
results to fine-tuning with the policy gradient, rather than
DEBELU. For our dataset, we use German-to-English (de-
en) IWSLT14 and English-to-French (en-fr) (Cettolo et al.,
2014). We follow a (2:2), (4:2), (1:0) teacher-mask anneal-
ing schedule for de-en and (2:2), (8:2), (1:0) schedule for
en-fr.

As seen in Table 1, we reproduce results from (Wang et al.,
2019), achieving an improvement over the baseline of 1.34
and 1.52 on the de-en and en-fr ISWLT14 datasets respec-
tively. We also see slight improvements in comparison
to the policy gradient method, reporting BLEU score im-
provements of 0.77 and 0.20 on our two datasets.

In addition, we evaluate computational complexity empir-
ically by comparing training time for the policy gradient
and DEBLEU methods. We find that optimizing for DE-
BLEU loss is more computationally efficient than using a
policy gradient. We report a 2.14x speedup for machine
translation tasks.

4.1.2. DISCUSSION

We provide analysis on the both performance and compu-
tational complexity of optimizing for DEBLEU. The main
result is that fine-tuning using DEBLEU loss can provide a
noticeable improvement, when compared to training only
with cross-entropy. In addition in our experiments, the
DEBLEU provides a slight improvement over using policy
gradient. One may argue that the improvement is not sig-
nificant, especially when evaluated on en-fr. However, our
results still suggest that DEBLEU seems to perform at least
as well as reinforcement learning methods. In addition, the
speedup in training time is a clear advantage over policy
gradient. Overall, our experiments provides evidence that

if we wish to optimize for BLEU score directly, we should
consider using DEBLEU since it provides similar improve-
ments when compared to the policy gradient method but
with less computation. Moreover, even if we did not care
about training time, it would still be worthwhile to try both
methods since they are comparable in performance.

For further work regarding optimizing for DEBLEU loss
in neural machine translation, we would like to modify
the experiment by testing on a larger dataset, namely the
English-to-German (en-de) WMT14 dataset. In addition,
rather than using a sequence-to-sequence model, we also
use transformer networks to evaluate our DEBLEU objec-
tive (Vaswani et al., 2017). Although we report positive
results here, we can provide a much more convincing argu-
ment for DEBLEU by evaluating on a more difficult task
and using state-of-the-art methods.

4.1.3. CAVEATS AND LIMITATIONS

Examining Figure 5, we can clearly see the improve that
optimizing DEBLEU loss has over training with just cross-
entropy and using the policy gradient method. However,
there are some caveats that one can point out.

First, we notice that the policy-gradient method perfor-
mance drops fairly quickly. On one hand, this is a clear
disadvantage. However, one could argue that this negates
the computational advantage that optimizing for DEBLEU
loss has since although each step takes almost twice as long
when using the policy gradient method, the method does
not require one to train for as many steps. However, we ar-
gue that the performance increase, especially on the de-en
dataset, is still a major advantage.

Next, the plot of the test BLEU score on the en-fr dataset in
Figure 5 shows that the performance plateaus after anneal-
ing from a (2:2) mask to (8:2). This observation suggests
that the teacher masks are somewhat fragile. However, a
positive takeaway is that the experiment suggests that we
may be able to push performance further. Perhaps the (2,2),
(8:2), (1:0) is not optimal for this dataset. We hope in future
works to experiment with additional annealing schedules
to improve the performance on en-fr, which would greatly
benefit our results since currently on our own experiments,
the difference between DEBLEU and policy gradient is not
signficiant on the English-to-French task.

4.2. Perturbation Studies

We first run experiments to demonstrate how modifying
tokens in the ground-truth sentence affects BLEU score,
cross-entropy loss, and DEBLEU loss. In this experiment,
we train a RNN encoder-decoder model on the Yelp senti-
ment dataset, optimizing for cross-entropy loss. We train
for 10 epochs until the neural network can almost perfectly



Optimizing BLEU Scores for Improving Text Generation

Figure 5. Test-set BLEU score when training (after pretraining us-
ing cross-entropy) on ISWLT14 German-to-English (de-en) and
English-to-French (en-fr) datasets. Graphs are taken directly from
(Wang et al., 2019), but are indicative of the experiments we have
replicated.

reconstruct the input sentences. We achieve a BLEU score
of 99.908 on the test set.

Next, we run experiments in which we randomly perturb
tokens in the ground-truth sentence and evaluate the au-
toencoder’s outputs using the above metrics. For replace-
ment experiments, we randomly pick a token and replace it
with an unknown tag outside of the embedder vocabulary.

As seen in the Figure 6, increasing the number of tokens
we replace or delete decreases the BLEU score dramati-
cally. Moreover, we observe that replacing and deleting to-
kens from the ground-truth sentence roughly have the same
effect on the BLEU score metric.

In Figure 7, we plot the effects of replacing and deleting
tokens on cross-entropy and DEBLEU loss metrics. We

Figure 6. The curves for the affect on the BLEU score of perturb-
ing ground-truth sentences.

Figure 7. The curves for the affect on the cross-entropy and DE-
BLEU loss score of replacing and deleting tokens in ground-truth
sentences. Initial (prior to training the autoencoder) cross-entropy
and DEBLEU loss metrics are plotted as dotted lines.
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first notice that cross-entropy loss is much more sensitive
to deleting tokens than to replacing, even though the two
perturbations have the same effect on BLEU score. The
cross-entropy loss spikes up dramatically, even after delet-
ing just 1 or 2 tokens. We also confirm our hypothesis
that in both cases, cross-entropy loss is more sensitive than
the DEBLEU loss metric. To further emphasize this ef-
fect, we plot the initial cross-entropy and DEBLEU losses
before training to get a sense of how much these values
change when perturbing the ground-truth sentences. We
can see that the cross-entropy loss far exceeds the loss in-
curred when the model has not seen any data, highlighting
how quickly this loss can blow up. DEBLEU loss however
never exceeds the initial loss value.

Overall, this experiment gives us confidence that DEBLEU
loss may be more appropriate for style-transfer text gen-
eration. In a sentence such as The food is good, one can
change the sentiment from positive to negative by just re-
placing the token good with bad. However, as shown in
our experiments, cross-entropy loss is sensitive to replac-
ing even one token.

4.3. Text Style Transfer

4.3.1. SETUP

In section 3.3, we gave a high-level overview of how we
adapt the architecture presented in (Hu et al., 2017) for
our style transfer experiments. We provide further details
on the experimental setup, which uses the Yelp sentiment
dataset.

For our baseline model, we following (Hu et al., 2017) and
pretrain for 10 epochs in which λc = 0, essentially forcing
the generator to generate proper sentences before training
it to infer the attribute code. We then train for an additional
2 epochs, setting λc = 0.1, effectively training the model
to classify decoded sentences correctly.

To test the effectiveness of our DEBLEU loss, we run an
experiment similar to the baseline experiment described
above. However after the initial 10 epochs of pretraining,
we add our DEBLEU loss to the generator loss, giving us

LG = LV AE + λDLDEBLEU + λcLAttr,c

Where λD is a tunable parameter. In our experiments, we
choose values from {0, 0.1, 0.5, 1.0} for λD (with λD = 0
corresponding to the baseline). We begin optimizing for the
DEBLEU loss using an initial (2:2) teacher mask, switch-
ing to a (4:2) mask after 2 epochs. Finally, we train without
a mask, i.e. (1:0), for an additional epoch. Beam search is
used for decoding.

BLEU Accuracy
λD = 0 (baseline) 53.63 90.75
λD = 0.1 55.45 90.61
λD = 0.5 52.12 91.12
λD = 1.0 53.07 89.83

Table 2. Test-set results for the text-style transfer tasks. We report
the sentiment classification accuracy of the decoded sentences as
well as the BLEU score when evaluated on the ground truth sen-
tences. Experiments were run on the Yelp sentiment dataset.

Flipping sentiment code
very friendly guys very unhappy guys
a fun, eclectic eatery a crap, pathetic eatery
great food, friendly staff pathetic food, unhappy staff
terrible experience delicious experience
they did a fabulous job! they did a crappy job!

Table 3. Hand-picked samples from the test set for sentiment
transfer on the Yelp sentiment set. We use results from our ex-
periment where λD = 0.1.

4.3.2. RESULTS AND DISCUSSION

We evaluate our experiments using the BLEU score with
the original sentence and the sentiment classification ac-
curacy. Results are reported in Table 2. We achieve a
BLEU score improvement of 1.82 by further optimizing
the DEBLEU loss, while maintaining a nearly identical bi-
nary classification accuracy. In Table 3, we provide a few
shorter, hand-picked examples that display the effective-
ness of the model.

Our experiment demonstrated that optimizing for BLEU
score using DEBLEU loss is effective for text-style trans-
fer. The positive results when compared to the baseline of
only using cross-entropy indicates supports are hypothesis
formed after conducting the perturbation studies. Cross-
entropy is more sensitive to sequence token changes, which
makes it less suitable for a task in which we want to en-
courage some differences between the generated sentence
and the ground truth. Moreover, we did not have the re-
sources to do thorough hyperparameter tuning on the three
loss components. We hope to evaluate on more values of
λD. In addition, we held λc constant, even though ideally,
we would wish to tune this parameter as well to maximize
performance.

4.3.3. CAVEATS AND LIMITATIONS

Despite these positive results however, there are several
caveats that we wish to address regarding the results of our
experiments. One major concern is that it is unclear how
significant a 1.82 increase in BLEU score is. Although on
some tasks such as machine translation, this would amount
to a large increase in performance over state-of-the-art, we



Optimizing BLEU Scores for Improving Text Generation

Flipping sentiment code
service was great worthless was pathetic
so good! so rant!
what a treat! what a refuse!

Table 4. Hand-picked samples from the test set for sentiment
transfer on the Yelp sentiment set. We specifically choose ex-
amples that are of lower quality to demonstrate a limitation of
the text-style transfer model. We use results from our experiment
where λD = 0.1.

cannot conclude the same on this task.

First, a BLEU score of 53.63 is already fairly high and al-
though 55.45 is a noticable improvement, it is unclear how
valuable this increase is, especially given that increases
BLEU score do not perfectly correlate to higher quality
sentences based on human judgment. Perhaps a stronger
improvement in BLEU score could add confidence to the
effectiveness of optimizing for DEBLEU loss. However,
as seen in Figure 6, modifying just a few tokens will lower
the BLEU score significantly. If a score of 55.45 is already
near the maximum value we could achieve for this task, it
may be difficult to push this metric further and perhaps we
need to focus more on other parts of the problem, such as
improving accuracy.

Second, for a task such as style-transfer, it is difficult to
measure how important BLEU score, since there are mul-
tiple metrics that matter for this problem. Perhaps the
marginal benefit of increasing BLEU score past 53.63 is
very low and that a higher accuracy is more important.
Perplexity is also an important metric. Although a higher
BLEU score would prevent the model from outputting non-
sense, such as just outputting the word ”bad” whenever we
want a sentence with negative sentiment, language perplex-
ity is still important for generating realistic sentences. For
example, in Table 4, we list examples in which the gener-
ated sentence has the correct sentiment but low perplexity.
When compared to those in Table 3, these samples appear
awkward and are of lower quality. Therefore, although we
have achieved a higher BLEU score, it is difficult to mea-
sure how much better we have done on this task. One pos-
sible way to measure this is to have humans manually com-
pare generated sentences, but this is a very costly endeavor.

An additional experiment that could add insight into this
issue is the incorporate a language model as a discrimina-
tor for this model. As stated earlier in this report, Yang
et al. run experiments by modifying the model from (Hu
et al., 2017). Empirically, they show that they can achieve
much better language perplexity while maintaining a simi-
lar level of classification accuracy. However in the process
of decreasing language perplexity, the model also achieves
a lower BLEU score than Hu et al.’s base model. An in-

teresting result would be to try to maintain similar levels of
accuracy and language perplexity while improving BLEU
score of the generated sentences. This setting could con-
tain an added advantage as well since the BLEU score us-
ing just cross-entropy is lower, leaving possibly more room
for improvement.

4.3.4. TRAINING INSTABILITY

Finally, we observed some instability during the training
process when optimizing for DEBLEU loss. The DEBLEU
had some trouble converging when run for longer epochs,
possibly due to the model also optimizing for classification
loss. The evaluated BLEU score also jumped around be-
tween epochs, reaching as low as 30 before climbing back
up to the 50s in the last two epochs.

There are a few options for future experiments that are
worth investigating. The first is that we would like to ex-
plore different teacher masks. We tried different combina-
tions of (4:4), (2:2), (4:2), (16:2), (8:2), and (1,0). In the
end, we settled on the (2:2), (4:2), (1:0) schedule since the
other options did not seem to make a difference. In addi-
tion, we currently anneal based on the number of epochs,
but perhaps it would make sense to a convergence trigger to
determine when to switch between masks. The main deter-
rence is that after pretraining, we decrease both DEBLEU
loss and classification loss, which unsurprisingly compete
with each other. It is unclear what the validation metric
should be for using as a convergence trigger.

5. Conclusion
We have explored the differentiable expected BLEU ob-
jective in the context of text generation, addressing dis-
crepancy issues between training (using cross-entropy) and
evaluation (using BLEU score). The method has the ad-
ditional benefit of being computational more efficient that
policy gradient methods that require sampling during train-
ing. We demonstrate the usefulness of this metric, having
run experiments on machine translation. Moreover, we fo-
cus on text-style transfer, having shown that DEBLEU is
less sensitive to token perturbations than is cross-entropy
loss. This added benefit makes the objective suitable for
sentiment-transfer text generation, which we observe in
our experiments as well. For future work, we believe that
running the additional experiments described in discussion
subsections of section 4 would be very beneficial. In addi-
tion, we hope to find additional tasks in which this metric
can be useful, ideally improving upon state-of-the-art re-
sults while limiting increases in computation.
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