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Abstract

Deep learning is at the heart of the current rise
of artificial intelligence. Whereas, deep neural
networks have demonstrated phenomenal success
(often beyond human capabilities) in solving com-
plex problems, recent studies show that they are
vulnerable to adversarial attacks in the form of
subtle perturbations to inputs that lead a model
to predict incorrect outputs. However, previous
works focus either on gradient-based strategies or
make use of black-box function approximator to
generate attacks. This makes adversarial attacks
virtually impossible to control or interpret. We
propose a CEN which outputs a graphical model
that benefits takes in location instructions and
generate local attacks. We also propose a GNN
that reasons about the objects in the scene and
generates attacks based on the reasoning. To our
knowledge, no prior works has been done on any
graphical model-based adversarial attack genera-
tion.

1. Introduction

Deep learning thrived in solving the problems that have
withstood many attempts of machine learning and artificial
intelligence communities in the past. However, such ad-
vancement does not come with no drawbacks. Research
in security and machine learning has exposed the vulnera-
bility of machine learning to integrity attacks. A common
technique for such attack is know as the adversarial attack:
generating a new “adversarial sample” by adding small, im-
perceptible noise to the original input, forcing the learned
DNN to misclassify the resulting sample.

Some intuitions has been provided that the existence of
adversarial examples is due to the linearity of the net-
work(Goodfellow et al., 2015), but the fact that non-linear
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Figure 1. Illustration of an adversarial attack

attack methods are empirically superior suggests against
such interpretation (Dong et al., 2018). No previous work
has explored any means to control the adversarial attacks
spatially.

ConvNets effectively make use of the spatial-invariant local
information within the input. Graphs are the most typical
locally connected structures. The extraction of spatial invari-
ant features often relies on pooling as explained by (Bengio
et al.,, 2013). Therefore, we expect locally-connected graphs
to be able to capture some information that are valuable for
pixel-level attacks.

Moreover, ConvNets are also shown to lack the ability of
compositional reasoning and spatial reasoning. Graphical
models, by their nature, are built to capture interactions
and relationship, which then generates reasoning. Human
reasoning can be captured by graphs. Another part of our
exploration will be to investigate whether relations captured
by graphs are helpful for adversarial attacks.

We believe graphical models are suitable for generating and
controlling adversarial attacks because graphs are a kind
of data structure which models a set of objects (nodes) and
their relationships (edges). Recently, graphical models are
regaining attention because of the great expressive powers of
graphs, i.e. graphs has built-in reasoning and understanding
of interactions between variables.

We identify two use-cases for graphs on adversarial attacks:
one explores the relation between pixels of a image (compo-
sitionality), and the other one attacks the relation between
entities and space (reasoning).

Compositionality We plan to explore a CEN which out-
puts a graphical model that benefits from locality (e.g.
MRF/Deep MRF) but is not constrained to grids like a con-
volution. This Graph will then be used to attack and will
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hopefully offer useful reasoning about the compositionality
of the attack.

Reasoning We plan to explore a graph-based structure for
generating explainable attacks on image inputs. We will
initialize the graphical model with information extracted
from the image (e.g., detected objects as nodes, distances
between objects as edges). We will then perform reasoning
on the graphical model. Finally, node-level features and
edge-level features of the graph will be used to generate
perturbation for adversarial attack. We hope that aside from
generating efficient attacks, our graphical model can give
reasoning about the generation of attacks.

2. Related Works
2.1. Graphical Neural Networks (GNN)

Graphical Neural Networks (GNN) are connectionist mod-
els that capture the dependence of graphs via message pass-
ing between the nodes of graphs. By its structure, GNN
naturally offers interpretability. Recent advances in network
architectures, optimization techniques and parallel compu-
tation have enabled successful learning with GNNs (Zhou
et al., 2018). Gated Graph Neural Network (GGNN) (Li
et al., 2015) modifies the primitive GNNs to use gated
recurrent units and modern optimization techniques. On
graph-structured inputs, GGNNs are demonstrated to have
favorable inductive biases relative to purely sequence-based
models. Another successful GNN, the Graph Convolutional
Network (GCN) (Kipf & Welling, 2016) extends Conv nets
to arbitrarily connected undirected graphs. GCNs learn
hidden layer representations that encode both local graph
structure and features of nodes.

GNNs have been applied to various image-related tasks,
where graph-based reasoning is often performed to incorpo-
rate both spatial and semantic information. In regional clas-
sification, (Chen et al., 2018) uses a Graph Neural Network
where regions and class labels are represented as labels, thus
encoding both spatial and semantics information within the
graph. For the task of Factual Visual Question Answering,
(Narasimhan et al., 2018) identifies useful sub-graphs of
a large knowledge graph and then use GCNs to produce
representations encoding node and neighborhood features
that can be used for answering the question. To understand
social relationships in images, (Wang et al., 2018) initializes
graph nodes with features extracted from regions of inter-
est and employs the GGNN to propagate node messages
through the graph to compute node-level features. It finally
uses a graph attention mechanism to attend to the most dis-
criminative nodes for identifying social relationships. In
our second idea (i.e., the reasoning idea), we plan to take
a similar approach as the above applications of GNNs. We
will construct graph models encoding spatial and seman-

tic information of image inputs, reason over the graph and
use information stored in nodes and edges for generating
attacks.

2.2. Contextual Explanation Networks (CEN)

While other GNNs focus on integrating with graphical mod-
els to directly augment the power of neural networks, CEN
(Al-Shedivat et al., 2017) offers a different way. Given a col-
lection of data where each instance is represented by inputs
c € C, and targets y € ), CEN constructs explanations in
the form of simpler models g. : X — ). While the original
inputs, ¢, can be of complex, low-level, unstructured data
types (e.g., text, image pixels, sensory inputs), we assume
that x are high-level, meaningful variables.

Contextual Explanation Networks can generate parameters
for a graphical model which is further used for localization
of attack. In our first idea (i.e., the compositionality idea),
we use a CEN to generate a CRF for capturing spacial
relations between of the image input.

2.3. Adversarial Attack

(Szegedy et al., 2013) first demonstrated how small pertur-
bation of images can fool the deep neural nets into mis-
classification. They employed Limited BFGS (L-BFGS) to
approximate a minimized perturbation of the image so that
the perturbed image labels differ from their original labels.

Adversarial attacks have been investigated for other ma-
jor deep learning models such as deep generative models
(Kos et al., 2018), Recurrent Neural Networks (Papernot
et al., 2016) and Deep Reinforcement Learning (Lin et al.,
2017). It has also been shown that adversarial attacks are
effective in practical real-world conditions, such as Cell-
Phone Camera Attack (Kurakin et al., 2016), Road Sign
Attack (Evtimov et al., 2017), Generic Adversarial 3D Ob-
jects (Athalye et al., 2017) and Visual Question Answering
Attacks (Xu et al., 2017).

Fast Gradient Sign Method (FGSM). After the discovery
of (Szegedy et al., 2013), (Goodfellow et al., 2015) proposed
‘Fast Gradient Sign Method” (FGSM) to efficiently compute
the adversarial perturbation for a given image. This method
exploits the linearity of deep neural networks in higher
dimensional spaces, which (Goodfellow et al., 2015) specu-
lates to stem from the designs of modern neural networks,
which encourages linearity behavior.

Momentum Guided Adversarial Attack. (Dong et al.,
2018)’s success in generating effective and efficient attacks
demonstrated that the non-linearity of the generation pro-
cess, giving us the intuition that it might be possible to
model attacks through a non-linear function approximator.

Despite the popularity of the ‘linearity hypothesis’, many
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Figure 2. An illustration of our proposed architecture for the compositionality method.

studies (Tanay & Griffin, 2016; Luo et al., 2015) have
demonstrated the existence of image classes that do not
suffer from adversarial attack for linear classifier. This hy-
pothesis is also in contrast with the common belief of the
non-linearity of deep neural networks.

Many studies provided different explanations for the ex-
istence of adversarial examples. (Tanay & Griffin, 2016)
hypothesized that adversarial examples exist because the
classification boundary lies too close to the sub-manifold
of the class samples. (Cubuk et al., 2018) argued that “the
origin of adversarial examples is primarily due to an in-
herent uncertainty that neural networks have about their
predictions”. (Rozsa et al., 2016) attributed the existence
of adversarial examples to the evolutionary stalling of de-
cision boundaries on training samples, which stems from
stalled contribution of correctly classified samples that lie
closer to the decision boundaries as the training proceeds.
Despite many attempts to provide an interpretation of the
existence of adversarial examples, current literature still
lacks consensus on the reasons of its existence.

3. Proposed Method
3.1. Compositionality Attack
3.1.1. BASELINE

To fully test the feasibility of our idea, we define our baseline
model to be a CRF weighted FGSM attack pipeline. A

ConvCRF (Teichmann & Cipolla, 2018) produces a weight
matrix which is directly used as € to weigh the gradients for
FGSM attack. This simple baseline should provide more
insights about which potential function to select for the task.

3.1.2. THE CEN-CRF MODEL

We construct our compositionality model by combining
the Contexual Explanation Networks (Al-Shedivat et al.,
2017) and the Conditional Random Field. We define the
context to be the input image Z, and target to be the noise
(perturbation) y € ). We model the process of producing
the noise y = G¢(Z) with a CEN (Al-Shedivat et al., 2017)
and a fully-connected CRF of the size of the image, with
a hidden node for each pixel. The weights of the CRF are
the outputs of the CEN, so we can view this process as the
CEN generating a CRF based on the image context and CRF
generating the noise y by inference. The noise y is then
combined with the original image 7 and then used to attack
the target classifier. Figure 2 illustrates the general model
structure of our CEN-CRF model.

3.1.3. CRF POTENTIALS

We define z, the input to the CREF, to be a heatmap between
[0, 1]. The heatmap highlights the “region of interest”, on
which we want the model to focus attack. We define n =
ch x h x w to be the size of the image vector reshaped
from an image of channel number ch, height i and width
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w. For each connection in the CRF, we define the following
potential functions:

1. ¢1(ys) = (yi—k;)?, where k; is a prior value generated
by the CEN.
2. $2(viry) = (yi — y;)°
_ (wi—yy)?

3. o3(xi, v, x5, Y5) = T eE where x; and x; are the
pixels of the heat map x at position ¢ and position 7,

respectively.

4. ¢4(Ziyyi, Iy, yj) = g‘ 7 )2 , where Z; and Z; are pix-
els of image 7 at position ¢ and j, respectively.

We then perform a weighted sum of the above four potential
functions:

Oy, X) =D wér(y)+ Y. aijba(yiry;)
i=1 i=1,j=1
+ Z bij03(Yi, yj, v, xj) (1)
i=1,j=1
+ Y ioavi v T T))
i=1,j=1

where w, a, b and c are weights generated by the CEN based
on input image Z. Note that the Equation 1 can also be
written in matrix multiplication form:

! !

Oy, x) =y  (wl+ A + % + %)y + 2wk)Ty (2)

where

e I is the identity matrix of size n X n.

o A'=diag(} L, ai,;) — 2A + diag(3o_
o B' =diag(}>;_, bi ;) — 2B +diag(3"7_, bi )
C" =diag(3_7_; ciy) — 2C +diag(3)_, cij)

Xij = (i — x;5)?

10i)

I; = (T — I;)°

k is the vector of prior noise of the same shape as y.

This gives the conditional likelihood of noise y as follows

exp(—d(y, @)
I, exp(—o(y.)

Note that during the inference step, we simply find the y*
that maximize the conditional likelihood p(y|x). Since the

p(ylz) = 3)

denominator in Equation 3 has marginalized y, minimizing
Equation 3 is equivalent as minimizing the potential (Equa-
tion 2). We constrain the weights in Equation 2 such that
the Hessian matrix of ®(y, x) is positive-definite. Since
Equation 2 is convex, we can solve for y* by taking the
gradient of Equation 2 and set it to zero. It is not hard to
show that the minimizer of Equation 3 is
B

y = (wl+ A+ =+ =)

1
vtz k)@

The output y* is used as the adversarial noise on image 7
by direct summation Z' = Z + y*. Then Z’ will be used as
the input of our target classifier 7.

3.1.4. LOSS FUNCTION

Our loss function has the three components

1. Target objective: Oy = H (T (Go(Z) +I)). This
is the cross-entropy of the target classifier 7.

2. Regularization: Rg = ||Gy||,. This regularization
term is the L2 norm of the model parameters, which
constrain the model weights.

3. Auxiliary loss: Ay = H(Gy(Z)). To improve the
performance of our CEN-CRF model, we introduced
an auxiliary task to the CEN part of our model as to
classify the input image Z. The cross-entropy of the
classification gives the auxiliary loss.

Combining the above three components, we define the fol-
lowing loss function of our CEN-CRF model:

Lo=—-0p+Ro+ Ag &)

Since the above method is fully differentiable, we can train
our CEN-CRF model with conventional gradient based
stochastic optimizer.

3.2. Reasoning Attack

We will train our Reasoning Attacker using multi-task learn-
ing, which includes two tasks: object classification and at-
tack. The Attacker’s structure is built on top of the reasoning
framework from Iterative Visual Reasoning Beyond Convo-
lutions (Chen et al., 2018). We will first use a ConvNet to
generate an initial prediction fj as well as a corresponding
attention ag. Then we iteratively apply a graph reasoning
module to capture both spatial and semantic relationships
between objects. At each iteration, a new prediction f;, an
attention a; and a perturbation p; are made from graph fea-
tures. Finally, combine predictions and perturbations from
all iterations with the attention to generate final results.
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Figure 3. Reasoning Attack Model, described in section 3.2. The middle grey block is the graph reasoning module, where information of
objects are propagated to each other. The model is trained through multi-task learning: the final graph feature is used for both classifying

objects and adversarial attack.

The graph reasoning module proposed in (Chen et al., 2018)
explores two types of relationships. The first one is spa-
tial relationship, meaning regions far away could directly
communicate information with each other. The second re-
lationship is semantic, which is realized by the use of a
knowledge base of object classes.

In the graph reasoning module, we construct a graph G =
(N, &), where N and £ denote nodes and edges respectively.
Two types of nodes are defined in A: region nodes N,. for
R regions (or bounding boxes), and class nodes N, for C
classes. N, is represented by feature maps extracted from
ConvNet. N, is represented by word vectors of class names
from fastText (Joulin et al., 2016).

Three groups of edges are defined between nodes. First for
N, a spatial graph is used to encode spatial relationships be-
tween regions &,_,,. This spatial graph characterizes 5 types
of relationships: left, right, bottom, up coverage pattern (in-
tersection over union). A second group of edges &,_,. lie
between region nodes N, and class nodes N., which en-
codes assignment for a region to a class. At iteration i,
previous prediction f;_; is used to define edge weights of
connections from all regions to all classes. Semantic rela-
tionships from knowledge bases are used to construct the
third group of edges between &._,.. We include 5 types of
edges within ., .: “is-kind-of”, “is-part-of”, “plural-form”,

CL T3

“horizontal-symmetry”, “similarity”.

For message passing, we follow the two reasoning paths
defined in (Chen et al., 2018) to learn the output features
G,. Finally, we use GG, to generate prediction f;, attention
a; and perturbation p;.

For training our Reasoning Attacker, we use a weighted loss
consisting of prediction loss, attack loss and a regularization
term. Prediction loss measures how accurate the final classi-
fication is. Attack loss is obtained by using the perturbation
to attack an object classifier (we will either use VGG or

ResNet for the classifier). The regularization term is meant
to minimize the norm of the generated perturbation.

4. Datasets

CIFAR-10 dataset. CIFAR-10 contains 60,000 32 x 32 x 3
RGB images of objects, with 50, 000 training samples and
10, 000 testing samples. It contains 10 mutually exclusive
classes. This dataset is used to experiment our composition-
ality method. The goal is to fool classification models into
misclassifying images.

ADE20K. (Zhou et al., 2016) ADE20K is a scene parsing
benchmark dataset. Images in ADE20K datasets are densely
annotated in detail with objects and parts. Each image has a
rich relationship between objects, so it is an ideal dataset for
showcasing the potential abilities of our Reasoning Attacker.
We will use ADE20K to train our Reasoning Attacker on the
task of object classification. Specifically, we will convert
segmentation masks from ADE20K to generate ground-truth
bounding boxes and train a classifier to predict class label
for each bounding box. The goal of the Reasoning Attacker
is to generate a small perturbation to harm the performance
of the classifier.

5. Experiments
5.1. Compositionality Method (CEN-CRF Model)
5.1.1. TARGET CLASSIFIER

We used a pretrained VGG-16 network trained on CIFAR-
10 as our target classifier to be attacked on. This model
achieves the classification accuracy of 99.8% train set and
88.6% on test set.
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Figure 4. Clarification accuracy of target classifier blue: before
attack orange: after attack.

5.1.2. WITHOUT MASKING

Figure 4 shows how the accuracy of the target neural net-
works drops as we train our compositionality attacker for
more iterations. This greatly confirms the validity our pro-
posed CEN-CRF approach. We can also view this from
the increase of the target cross-entropy (target loss) as the
training proceeds, as shown in Figure 5.

Target Loss versus lterations

Target Loss

50 K 5 ES 2.5k ES 3.5k ax 4.5 5k 5.5 6k

Iterations

Figure 5. Target cross-entropy increases as training iteration in-
creases, indicating the effectiveness of the attack.

We compare our attack results to two baseline methods: Fast
Gradient Sign Method, Iterative Fast Gradient Sign Method.

We noticed that compared to the baselines (FSGM, iFSGM),
the noise generated by our model is much smoother and
more concentrated around some areas. This corresponds to
the general ”smoothing” effects of CRFs.

To rule out the situation where it is the CEN instead of
CREF that learns the noise, we also present the following
distributions of prior noise and the actual generated noise ,
as shown in Figure 6 and Figure 7.

We make an important observation that the distribution of
the prior noise (K) unimodal is different from the distri-
bution of the posterior (Output Noise) (V). We therefore

Frequency

Frequency

Distribution of k

Prior noise

Figure 6. Distribution of prior noise k

Distribution of y

-0.15 0.05 0.05 0.15

Generated noise

Figure 7. Distribution of the actual generated noise y.
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conclude that the output of our attack model does make use
of the pixel-level edge potentials.

5.1.3. WITH MASKING

Currently, the implementation with masking is still generat-
ing the same noise for all the attacks. The CRF seems to be
generating the same noise no matter what the input mask is.

We believe that this is caused by the insufficiency of our
potential functions to enforce the mask. We have tested a
bunch of potential functions and achieved some progress,
but we are still far from getting the CRF to work.

5.2. Reasoning Attack
5.2.1. DATA PREPROCESSING

In ADE20k, we filter out images without ground truth la-
belled bounding boxes. We also filter out rare classes.
Specifically, we discard classes that occur fewer than 5
times in the whole dataset. After filtering, we are left with
1485 classes. For each image, we resize it such that the
longer side has dimension 600. Large images are cropped
such that no dimension exceeds 600. We then normalize
RGB values of each image by subtracting mean and dividing
by the standard deviation. Finally, if an image has more than
100 labeled bounding boxes, we randomly pick 100 boxes
during training phase and choose the first 100 boxes during
validation phase. This is for the purpose of more stable
utilization of GPU. During testing, all bounding boxes are
kept.

5.2.2. TARGET CLASSIFIER

We choose the baseline model in (Chen et al., 2018). The
model is a simplified version of Faster R-CNN (with the
proposing of regions of interest removed) as the network to
be attacked. The backbone classifier is ResNet-50 pretrained
on ImageNet. The last conv4 features and ground-truth
bounding boxes are used to compute per-region features.
Per-region features are then fed into layers above conv4 to
obtain final features for classification. A fully-connected
layer is then used to compute predictions. Parameters of
convl layer and conv?2 layer are fixed. Batch normalization
parameters are also fixed.

The ADE20k dataset is split into 3 sets for training, valida-
tion and testing. The training set has 40420 images. Both
validation set and testing set have 1000 images. The model
is trained by an SGD optimizer for 17 epochs. Classification
results are evaluated by average precision (AP) and average
classification accuracy (AC). We take the average over both
instances and classes. Table 1 displays the results.

Model InsAP InsAC CIsAP Cls AC

Before Attack  65.0 65.0 37.6 33.9

After Attack 4.3 4.3 0.2 0.1

Table 1. Classification results of target classifier on ADE20Kk test
set before and after attack. AP is average precision and AC is
average classification accuracy. Ins means per-instances and Cls
means per-class. There’s a significant decrease in both precision
and accuracy after attack

5.2.3. TRAINING OF ATTACKER

We use the same structure as the target classifier to extract
per-region features. That is, output of conv4 layer from
ResNet-50 and ground-truth bounding boxes are used to
compute per-region features. Note that although this part
of the model shares its structure with target classifier, they
don’t share parameters. The target classifier and the attacker
are trained independently.

Per-region features then go through a fully connected layer
and then get passed to the Graph Reasoning Module as
initial node features. The dimension of node features is set
to be 512. We then perform message passing on the graph
for two iterations, where each iteration contains three passes
of the message passing procedure described in section 3.2
of (Chen et al., 2018). After the Graph Reasoning Module,
the model splits into two different branches, one for region
classification and the other for adversarial attack.

For the region classification task, node features from all
iterations (including initial node features) are used for clas-
sification. Features from each iteration also generate a con-
fidence score, which is used to weight its prediction when
we linearly combine all the predictions.

For generating perturbation, only the final node features are
used. The node features is first fed through a fully-connected
layer and then resized to the size of the original image
using CropAndResize. We then average over the nodes and
feed the features through another fully-connected layer to
generate a perturbation of exactly the same dimension (color,
width and height) as the original image. We perform white-
box attack, which means we make use of the target classifier
while training our attacker. The generated perturbation is
directly added to the image input (after data preprocessing
as described in 5.2.1) and then the attacked image is fed to
the target classifier.

Our model is trained end-to-end with three loss terms. The
first one is cross entropy loss of the region classification
branch with a multiplicative factor of 1. The second loss
term is the exponential of the negative of cross entropy
loss output by the target classifier after attack, with a mul-
tiplicative factor of 100. The third loss term is L2 norm of
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perturbation divided by the total size of perturbation. The
third loss term has a multiplicative factor of 10000.

Our attacker is trained with an SGD optimizer for 7000 iter-
ations (where each iteration is one image because the input
cannot be batched due to different sizes of their graphs). Ta-
ble 2 demonstrates the effect of the attack. The performance
of the target classifier drops significantly. Additionally, the
average L2 norm of perturbation on test set is 7.03 - 1076.

6. Conclusion
6.1. Compositionality Attack

From our current results, we observe that our CRF does not
solely dependent on the prior (K) from CEN. The weighted
potential functions are easily interpretable. The CRF demon-
strates good performance at suppressing the noise, yet main-
taining good attack quality.

While we are not able to get the heat-map weighted CRF
working, we believe that our CRF based approach can still
offer some degree of insight on how the potential functions
interact with each other.

Furthermore, our successful results suggests that current
adversarial attack methods might benefit from the use of a
ad-hoc CRFE.

Two of the most obvious drawbacks to our current approach
includes: 1. Insufficiency of potential functions (because
we have to keep the objective convex). 2. Slow computation
speed to invert a full weight matrix during both training and
inference phase.

We propose to address the problems through variational in-
ference, by proposing variational distributions ¢; (w) each
capturing an interpretable potential function. We will use the
CEN to output a weight for each distribution ¢; and sample
from the joint distributions of ¢; using the reparametriza-
tion trick. This will allow us to train CRFs with fast infer-
ece/training time and more complex potential functions.

6.2. Reasoning Attack

Our Reasoning attacker is able to effectively attack the tar-
get classifier with a small perturbation (based on L2 norm).
This indicates that reasoning of object relationships within
images could potentially help with adversarial attack. How-
ever, our experiments are not thorough enough:

e we noticed that the classification branch of our attacker
does not perform well compared to the target classifier.
Thus, the full potential of graph reasoning module
has not been utilized. We suspect that by improving
classification branch, we can get better results on attack
as well.

e In addition to L2 norm, we should visualize the images
to confirm attack is not detectable by human eyes.
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