
Learning Structured Latent Space Encoding for
Part Based Generative Modeling of 3D Objects

Cormac OMeadhra Stephen Landers

Abstract
Real-world operation of autonomous systems ne-
cessitates modeling and inference in 3D environ-
ments, that are complex, varied and highly clut-
tered. This work achieves increased generaliz-
ability through the use of a part based genera-
tive surface model that is capable of generating
high fidelity surfaces from an un-ordered point
cloud. The expectation-maximization algorithm
is employed to learn the latent correspondences
between the input data and the inferred parts at
test-time, enabling the approach to better gener-
alize to unseen parts by focusing on capturing
surface patch regularity rather than part distribu-
tions.

1. Introduction
Real-world operation of autonomous systems necessitates
modeling and inference in 3D environments. Point clouds
are a widely used representation of 3D environments that
are compatible with modern 3D sensors, such as RGB-D
and LIDAR. However, the point clouds produced by these
sensors are typically large (> 105 points) and, as they are
samples from 2D surfaces, highly redundant due to missing
information about local neighborhoods and shared surfaces.
From a representational efficiency stand-point, it is desirable
to identify a model of the more compact surface from which
the point cloud was sampled.

To that end, this work aims to develop a part-based genera-
tive surface model that is capable of generating high fidelity
surfaces from an un-ordered point cloud. Given a point
cloud X representing an object modelO, consisting of parts
{Pi}, such that ∪iPi = O, we wish to construct a genera-
tive model gφ(fθ(Xi)), acting on a subset of the input point
cloud Xi ⊆ X , where fθ(Xi) is an encoder that generates a
latent encoding zi of the input and gφ(·) is a decoder that
outputs a surface model S. The parts, {Pi}, are learned
such that their union forms a surface S that well models
the generating surface of the input point set. As such, the
parts are not necessarily semantically meaningful, but a se-
mantically meaningful decomposition can be enforced when

labeled training data is provided. In the absence of semantic-
part-segmented data, we train the the generative model in
an unsupervised manner, with a heuristic based labeling, to
minimize reconstruction error as detailed in section 3.

We are interested in exploring the effect of employing
the expectation-maximization (EM) algorithm to determine
point-set partitioning at test time, such that a set of J identi-
cal part models each operate on a set of, potentially partially,
overlapping point clouds. Thus, at training time, we learn a
relatively small autoencoder model that captures local struc-
ture for a J subsets of the input point cloud. We hypothesize
that removing the need for the network to learn input-point
partitioning will enable increased model capacity and there-
fore fidelity.

2. Related Work
While several representations of 3D objects are commonly
used, point clouds are the most easily obtained from com-
mon commercially available sensors. Learning features
directly on point clouds is a desirable tool for analysing
point clouds. However, unlike images, point clouds do not
exist on a structured lattice and any function that operates
on point clouds must be invariant to permutation of the
input points. A successful solution to this problem was
found in the form of PointNet and its successors (Qi et al.,
2017), which utilize point-wise features and max-pooling
to achieve a permutation invariant feature extractor. Subse-
quently, the requirement for point-wise feature extraction
has been relaxed to enable learning of 3D convolutional
filters as a direct analogy to the 2D image case (Xu et al.,
2018). These 3D convolutional filters enable efficient ex-
traction of features from unordered point clouds, which can
be leveraged to create an expressive latent space encoding.

The most direct method for generating models of 3D ob-
jects from latent codes is to output a point cloud. However,
other representations, such as triangulated meshes, are better
suited to many applications, e.g. graphics and computational
geometry. Recently, approaches have been presented to pre-
dict mesh models from a latent space encoding, using, for
example, planar patch deformation (Groueix et al., 2018) to
map set of 2D planes onto the surface of a 3D object. How-

Surface Reconstruction from Point Clouds through Mixtures of Learned Primitives

ever, these approaches have demonstrated limited fidelity.
An alternative strategy that has yield much higher fidelity is
to utilize the decoder as a classifier and implicitly encode
the object surface as a classification boundary (Mescheder
et al., 2018). A mesh model can then be obtained using
standard reconstruction techniques.

Due to the structure inherent in part-based models, it is de-
sirable to embed explicit knowledge of this structure into
the point-cloud encoding architecture. This can be achieved
through the use factorized graphical model in the form of
a conditional random field, from which the latent space
distributions can be extracted using mean-field inference
(Huang et al., 2015). Improved performance has been ob-
served through the use of VAE architecture, with additional
structure enforced in the latent space. Specifically, the VAE
latent encoding is combined with a learned Binomial exis-
tence distribution to model the presence of parts within an
object instance, which enables capturing discontinuous part
removal and addition actions (Nash & Williams, 2017). Gen-
erative Adversarial Networks (GANs) offer an alternative
strategy to VAEs for generative modeling. Li et al. propose
a multi-stage framework that utilizes a part-based bounding
box GAN to achieve an object skeleton latent encoding fol-
lowed by a second stage, which learns to fill the bounding
boxes based on the part encodings. While the GAN provides
an alternative optimization formulation, a general principle
from this approach is the introduction of part-based skele-
tons into the latent space to yield increased accuracy by
progressively growing the model complexity. As an alter-
native strategy to combining parts within the same latent
space, Dubrovina et al. propose learning disjoint sub-spaces
for each part, which can be linearly combined to reconstruct
a composite object. Furthermore, Dubrovina et al. tackle
the problem of part alignment through the use of a spatial
transformer network (Jaderberg et al., 2015), which learns
to transform parts from a canonical frame to the desired
object pose.

The problem of part-based 3D modelling has strong parallels
to 3D indoor scene synthesis. However, indoor scenes often
exhibit greater diversity in relative part placement, grouping
and orientation, which requires additional latent space struc-
ture (Li et al., 2019). Transferring these techniques to the
problem of the 3D part-based modeling can enable increased
robustness and diversity in the reconstructed models.

Variational autoencoders (VAE) are a widely used technique
for generating latent space encoding of an input distribution
(Kingma & Welling, 2013). The VAE learns a mapping from
a data distribution to a Normal distribution with diagonal
covariance over the latent variables. The mapping is learned
by minimizing a lower bound on the reconstruction error
and the deviation of the latent space distribution from the
desired diagonal Gaussian. Achieving a diagonal covariance

is referred to as disentangling the latent variables. This can
be achieved more reliably through the use of constrained op-
timization, where the deviation between the diagonal latent
prior and the learned latent distribution is bounded (Burgess
et al., 2018). This concept can be extended further through
the introduction hierarchies of independent variables, which
can achieve a more expressive latent space factorization
(Esmaeili et al., 2018).

Several surface model variations were considered for this
work. Ultimately, we elected to use an explicit surface
model achieved through a parametric surface function.

Implicit Surface Models Learning implicit models of
object surfaces has recently been shown to achieve high-
fidelity surface models (Mescheder et al., 2018; Park et al.,
2019). One particularly interesting implicit representation
is using a signed distance field (SDF) (Park et al., 2019).
Given a network fSDF(x, θ) that outputs a signed distance
field from a surface S, we can extract the surface via the
level-set fSDF(x, θ) = 0. Training such a network simply
requires regressing to an SDF learned over the input shape.
We follow the approach of Park et al. (2019) to construct
an SDF for each mesh in the input dataset and use a cost
function of the form

LSDF(fSDF(x, θ), s) = |clamp(fSDF, τ)−clamp(s, τ)| (1)

where clamp(x, τ) = min(τ,max(−τ, x)) and τ is a pa-
rameter controlling the maximum extent of the SDF.

Explicit Surface Models While implicit surface model-
ing has the benefit that it outputs the distance field directly
which is useful for the E-step calculation (??), explicit sur-
face modeling has the benefit of directly outputting a usable
shape model such as a mesh. We follow the approach of
Groueix et al. (2018) and minimize the symmetric Chamfer
distance between the learned mesh, fMESH(x, θ), and the
ground truth S. The loss function is evaluated over a point
cloud X̃ resampled from fMESH(x, θ) and a point cloud S
resampled from S.

LMESH(X̃ ,S) =
∑
s∈S

min
x∈X̃
‖x−s‖22+

∑
x∈X̃

min
s∈S
‖x−s‖22 (2)

Primitive Surface Models The final approach we con-
sider is learning primitive based models. Specifically, we
consider superellipsoids which implicitly define a surface
by the equation

(| x |r + | y |r)t/r + | z |t = 1 (3)

A significant benefit to this model is that it only requires
the prediction of two parameters r, t. The loss function

Surface Reconstruction from Point Clouds through Mixtures of Learned Primitives

is identical to LMESH, but with points resampled from the
surface of the primitive in this case.

3. Methodology
3.1. Probabilistic Surface Model

We wish to model a surface in R3, which we represent in
parameterized form

Sj(Θ) = fj(u, v; Θ) = Sj : R2 → R3 (4)

where the parameters θ define the chart from a two-
dimensional space on which u, v are defined. We model a
point cloud, X , as a set of noise-corrupted samples from a
uniform distribution over the surface S(Θ)

x = smin + nε (5)

where smin is the point closest to x lying on S , n is the unit-
normal vector at smin and ε is zero-mean Gaussian noise
ε ∼ N (0, σ2). The distribution over point cloud samples
can then be expressed as (dropping the dependency on Θ
for brevity)

p(x) = p(x|smin;)p(smin) = N (dmin(x), σ2)
1

|S|
(6)

where dmin(x) = ‖x − smin‖2 and |S| is the surface area
of S . We note that the modelling the noise as being directed
normal to the surface is a choice made for mathematical
convenience, in that it results in a tractable form for the
point likelihood function.

We further elect to model S(Θ) as the union of J surface
parts Si(θi), where Θ = {θ1, . . . , θJ}. Each parts Si is
associated with a corresponding probabilistic model pi(x),
which is defined according to Equation (6). By constraining
the surface parts to be disjoint, i.e. x ∈ Si ⇒ x 6∈ Sj ∀j 6=
i, we can express the union of surface parts as a sum

p(x) =

J∑
j=1

πjpj(x) =

J∑
j=1

1

|S|
exp

(
−
d2

min,j(x)

σ2

)
(7)

where {πj} are a set of normalizing coefficients, which are
given by πj =

|Sj |
|S| . in order to achieve the desired uniform

surface distribution.

3.2. Learning Surface Models via the EM algorithm

Given a point set X , the parameters Θ can be learned
through maximum likelihood estimation, which is achieved
by maximizing the log-likelihood of the probabilistic sur-
face model, log p(x; Θ). However, due to the presence of
the sum inside the log, this objective is difficult to optimize.

The expectation-maximization (EM) algorithm (Dempster
et al., 1977) provides an iterative method for optimizing the

log-likelihood. We proceed by introducing binary, latent
correspondence variables, z, and using the complete data
log-likelihood to optimize a lower bound

`(x) =

N∑
i=1

log
∑
z

p(xi, z) ≥
N∑
i=1

J∑
j=1

γij log
p(xi, z = j)

γij

where γij = q(z = j|xi) and q(z|x) is a proxy posterior
distribution over the latent correspondence variables. It can
be shown (Bishop, 2006) that the lower bound is tight when
the γij terms are selected as

γij = p(zj |xi,Θ) =
p̂k(x;θj)∑
k p̂k(x;θk)

(8)

where p̂k(x;θk) = exp
(
−d

2
min,k(x)

σ2

)
However, in the case

of distributions with non-compact support, eq. (7) this will
assign N points to each of the J surface parts. Under an
alternative interpretation of EM, the E-step can be viewed
as minimizing the divergence between the true latent vari-
able posterior p(z|x) and the proxy q(z|x)(Neal & Hinton,
1998). By placing constraints on families of valid posteri-
ors q(z|x), we can retain the guarantees of monotonically
increasing the lower bound, while achieving significant spar-
sification of the assignment distribution γij .

Maximal Assignment In maximal assignment, we set

γij = 1 if j = arg max
k

p̂k(x;θk) (9)

and zero otherwise. This results in each point being assigned
to a single part, which maximizes numerical efficiency and
avoids the need for the distance function dmin(·) to reason
about point-wise weights. However, with this approach it is
more difficult to impose inter-part smoothness constraints,
which may result in a more jagged final surface.

δ-responsibility Assignment To overcome this risk of a
non-smooth output surface, we propose to select the parts
with the largest assignments such that a fraction δ of the
responsibility is accounted for. We denote this set as ∆i.
The latent distribution is then

γij =
p̂k(x;θj)∑

k∈∆i
p̂k(x;θk)

if j ∈ ∆i (10)

and zero otherwise. A benefit of this approach is that as the
parts are no-longer disjoint, it becomes possible to enforce
smoothness constraints during the training stage (Williams
et al., 2018). However, this also necessitates the reasoning
about point-wise weights, which will be discussed later.

M-Step Given the responsibilities γij , the maximization
step becomes

Θ = arg max
θ1,...,θJ

N∑
i=1

J∑
j=1

γij log p̂k(x;θj) (11)

Surface Reconstruction from Point Clouds through Mixtures of Learned Primitives

Figure 1. Proposed network architecture. From left to right, input point cloud and point-wise weights are transformed and passed through
a PointNet (Qi et al., 2016) encoder to achieve a feature representation of the patch points. The surface is then reconstructed by passing
samples from a 2D grid along with the patch feature through a decoder network.

Each of the θj can be optimized independently, giving the
following part-wise updates

θj = arg max
θj

N∑
i=1

γij
(
‖x− smin‖22 + σ2 log |Sj(θj)|

)
(12)

The first term of this objective seeks to find the minimum-
error interpolating surface and the second term acts as a
surface area regularizer. The noise variance, σ2, controls
the regularization, which is as expected.

3.3. Learning Surface Patches

In this work, we follow Groueix et al. (2018) and use an auto-
encoder to model the function fj(u, v;θj). Specifically, we
train an encoder modeled after the PointNet (Qi et al., 2016)
with a latent space of size 1024. However, in order to
assess the increased capacity of the proposed model, we
train smaller PointNet encoders with reduced latent space
codes. The encoder g(e)

θj
(Xj) learns a local surface code

describing an individual surface part defined by Xj .

Each of the J latent codes are then passed through identi-
cal decoder networks, with tied weights, which output the
learned surface representation h(d)

θj
. The decoder consists

of a stack of fully-connected layers, mapping from the la-
tent code of size L to the output size, which corresponds
to a point in R3. An illustration of the proposed network is
shown in Figure 1.

We train this network using the squared Chamfer distance
loss function, which is given by

dCH(x,S) = min
s∈S
‖x− s‖22 (13)

The Chamfer distance computes an approximation of the
normal distance to the surface as shown in Figure 2.

In order to prevent the network overfitting to the training
data, we regularize the surface area of the reconstructed

dmin
d

dmin =0

(u,v)

f(u,v)

Figure 2. Visualization of the parametric surface representation
and the relationship between the Chamfer distance and the normal
surface distance.

patch. Given the parametric surface representation fj(u, v),
the surface area of a patch is given by

|Sj | =
∫

(0,1)2

√√√√∥∥∥∥∂fj∂u
∥∥∥∥2

2

∥∥∥∥∂fj∂v
∥∥∥∥2

2

−

(
∂fj
∂u

T ∂fj
∂v

)2

dudv

≈ 1

N

N∑
i=1

√
‖fu,j‖22 ‖fv,j‖

2
2 −

(
fTu,jfv,j

)2
(14)

where we made use of the Monte Carlo estimate of the
surface integral evaluated using the N samples drawn from
the 2D latent space when reconstructing the surface Sj .

Given this choice of regularized training loss, we see that

Surface Reconstruction from Point Clouds through Mixtures of Learned Primitives

Algorithm 1 Patch Initialization, K-init
Input: Point cloud X , Target # patches J ,

Initial # patches NINIT
Result: Point-part labels Γi
Init: Γinit = k-means(NINIT, X)
While Npatches > J

Get patch k with min Ck = Nk + ωλλmin

Merge patch k with neighbor with minimum Cj

Algorithm 2 Patch EM
Input: Point cloud X , # patchesJ
Result: K-patch surface reconstruction Xrecon, {Sk}
Init: Γinit = k-init(K, X)
While not converged:

M-step:
Xr =

⋃
k PatchNet(X,Γ(k)) Equation (12)

E-step:
Γ(k) = p(zk|X ,Θ) Equation (8)

the network is trained to optimize the same function as
in Equation (12) from the M-step of the EM algorithm,
where the regularization parameter can be interpreted as the
variance of the Gaussian sampling noise.

3.4. Initialization Strategies

In order to initialize the EM algorithm and to provide the
network with suitable training data, we utilize a heuristic
based partitioning algorithm. The algorithm The algorithm
pseudocode is presented in Algorithm 1. The algorithm
proceeds by learning a k-means partitioning of the data
with some number of patches NINIT, which is greater than
the target number of patches J . The k-means patches are
progressively merged until the target number of patches
has been reached. The merging strategy selects patches
according to a weighting function defined by the weighted
sum the patch size Nk and λmin, the minimum eigenvalue
of the patch sample covariance. The term ωλ is a mixing
term. An example partitioning for a chair model taken from
the ShapeNet dataset is shown in fig. 3.

3.5. Algorithm

The full EM algorithm used to fit a patch model requires
relatively few steps. Given and point cloud and a target
number of patches, initialization is performed using the k-
init algorithm. The initialization is the passed through the
learned surface parameterization network, which outputs a
new surface parameterization (M-step). The responsibility
weights are then recomputed (E-step) and the process is
repeated until the responsibility converges. The pseudocode
for the algorithm is given in Algorithm 2.

Figure 3. Heuristic patch initialization using the K-init algorithm
with K = 25.

4. Experiments
4.1. Dataset

Evaluation was performed on the ShapeNet dataset (Chang
et al., 2015), which provides a 40k instances over 13 dif-
fered objects classes. The ShapeNet dataset was used in the
modified form provided by (Groueix et al., 2018), which
extracts the subset of each shape that is visible by raycasting
from an external viewpoint. This removes points lying on
the interior of the object which could give the point cloud
volumetric properties. The ShapeNet training data used con-
siders the classes plane, bench, cabinet, car, chair, monitor,
lamp, speak, firearm, couch, table cellphone and watercraft.

4.2. Results

The training loss, presented in the Figure 4, shows near
identical performance across training and validation data for
both networks. This suggests that at the scales of the patches
used, the objects show significant regularity. This is in keep-
ing with the central hypothesis of this work - that at a local
level, surfaces exhibit substantial similarities, despite stark
global differences. Figure 4 also demonstrates the expected
result that increasing the number of trainable parameters in
the network results in improved performance. However, we
note that the performance for the smaller network remains
competitive even at a substantially reduced size.

A qualitative evaluation for the small network is presented
in Figure 5 and Figure 6. These figures demonstrate that

Surface Reconstruction from Point Clouds through Mixtures of Learned Primitives

Figure 4. Training loss for the small and large variations of the
auto-encoder architecture. Note the similarity between the test and
validation error.

the training loss achieved in Figure 4 corresponds to strong
reconstruction performance, which the majority of the data
structure being preserved. However, we note that the re-
constructed surfaces exhibit some deviation from the input
point clouds, which can be attributed to two short-comings
of this version of the proposed algorithm. Firstly, in the
hard-partitioning approach, patches are independent, which
does not impose any constraints on smoothness across patch
transitions; using the δ-responsibility E-step may alleviate
this. Secondly, the noise variance σ2 was set to zero for
this trials, which results in the networks being unregular-
ized. This may result in overfitting to some of the training
data. However, since the training and validation losses in
Figure 4 are very similar, it does not seem likely that this is
a significant issue.

5. Conclusion
Surface reconstruction can be achieved in an efficient and
generalizable manner using a collection of small, learned
patch primitives. By encoding these patches through a neu-
ral network, a flexible representation is achieved that is
capable of generalizing across classes ranging from planes
to cars. The flexibility of the approach can be further in-
creased through the use of the EM algorithm to learn the
latent correspondences between the patches and the input
data. The validity of the approach was demonstrated quan-
titatively and qualitatively on a modified version of the
ShapeNet dataset. Further work is required to evaluate the
performance of the complete algorithm and to determine the
optimal architecture and hyperparameter selection.

References
Bishop, C. M. Pattern recognition and machine learning.

springer, 2006.

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters,
N., Desjardins, G., and Lerchner, A. Understanding dis-
entangling in β-vae. arXiv preprint arXiv:1804.03599,
2018.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., et al. Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012, 2015.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maxi-
mum likelihood from incomplete data via the em algo-
rithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977.

Dubrovina, A., Xia, F., Achlioptas, P., Shalah, M., and
Guibas, L. Composite shape modeling via latent space
factorization. arXiv preprint arXiv:1901.02968, 2019.

Esmaeili, B., Wu, H., Jain, S., Bozkurt, A., Siddharth, N.,
Paige, B., Brooks, D. H., Dy, J., and van de Meent, J.-W.
Structured disentangled representations. stat, 1050:12,
2018.

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and
Aubry, M. A papier-mâché approach to learning 3d sur-
face generation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 216–224,
2018.

Huang, H., Kalogerakis, E., and Marlin, B. Analysis and
synthesis of 3d shape families via deep-learned genera-
tive models of surfaces. In Computer Graphics Forum,
volume 34, pp. 25–38. Wiley Online Library, 2015.

Jaderberg, M., Simonyan, K., Zisserman, A., et al. Spatial
transformer networks. In Advances in neural information
processing systems, pp. 2017–2025, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., and
Guibas, L. Grass: Generative recursive autoencoders for
shape structures. ACM Transactions on Graphics (TOG),
36(4):52, 2017.

Li, M., Patil, A. G., Xu, K., Chaudhuri, S., Khan, O.,
Shamir, A., Tu, C., Chen, B., Cohen-Or, D., and Zhang,
H. Grains: Generative recursive autoencoders for indoor
scenes. ACM Transactions on Graphics (TOG), 38(2):12,
2019.

Surface Reconstruction from Point Clouds through Mixtures of Learned Primitives

Figure 5. Table class training data input (left) and reconstruction (right). Colored points correspond to different patches.

Figure 6. Table class validation data input (left) and reconstruction (right). Colored points correspond to different patches.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin,
S., and Geiger, A. Occupancy networks: Learning
3d reconstruction in function space. arXiv preprint
arXiv:1812.03828, 2018.

Nash, C. and Williams, C. K. The shape variational autoen-
coder: A deep generative model of part-segmented 3d
objects. In Computer Graphics Forum, volume 36, pp.
1–12. Wiley Online Library, 2017.

Neal, R. M. and Hinton, G. E. A view of the em algorithm
that justifies incremental, sparse, and other variants. In
Learning in graphical models, pp. 355–368. Springer,
1998.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and
Lovegrove, S. Deepsdf: Learning continuous signed dis-
tance functions for shape representation. arXiv preprint
arXiv:1901.05103, 2019.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. 2016.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep

hierarchical feature learning on point sets in a metric
space. In Advances in Neural Information Processing
Systems, pp. 5099–5108, 2017.

Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna,
J., and Panozzo, D. Deep geometric prior for surface
reconstruction. arXiv preprint arXiv:1811.10943, 2018.

Xu, Y., Fan, T., Xu, M., Zeng, L., and Qiao, Y. Spidercnn:
Deep learning on point sets with parameterized convolu-
tional filters. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 87–102, 2018.

A. Alternative Grouping Strategies
Initializing our EM point cloud groupings randomly or using
k-means causes the point cloud to be split along arbitrary
lines. It would be ideal if this initial grouping made an
attempt to adhere to the natural groupings humans perceive.
While human perceptual groupings are a complex topic and
a complete treatment is out of the scope of this project, one
simple way we group points is by looking for smooth sur-
faces. The goal of this section is to produce an initialization

Surface Reconstruction from Point Clouds through Mixtures of Learned Primitives

method that will group some parts of a point cloud by esti-
mating how well they are represented by smooth surfaces,
resulting in a more natural looking split.

Perceptual grouping This method operates by building
up groupings from a low level. It can build up arbitrarily
large groupings given that it can do the following:

• Smooth surfaces can be detected in small patches of
the point cloud.

• Smooth surfaces can be detected in pairs of small
patches of the point cloud.

The method for detecting smooth surfaces will be covered
in the next section. Assuming that such a method exists, we
can break the point cloud into small arbitrary pieces and
look for smooth surfaces in those pieces. We then attempt
to combine each of these pieces with its neighbors, making
pairwise smooth surfaces. Once we have done this, we can
build larger pieces by looking for pairwise smooth surfaces
that share the small smooth surfaces that we detected. The
collection of all pairwise smooth surfaces that are connected
by small smooth surface subsets is a perceptual grouping,
and could grow to represent very complex surfaces given
that the smaller pieces of those complex surfaces fit our
smooth surface model.

To formalize this concept, given

{si : si ∈ surfaces} (15)

and

{pk : pk ∪ {si, sj}, i 6= j, pk ∈ surfaces}, (16)

a perceptual grouping is defined as

∪ {pk : ∃{pm, si} | k 6= m, si ⊂ pk, si ⊂ pm}. (17)

Smooth surface model There are many ways to represent
a 3D surface. Here are the criteria we had for this model:

• This surface model should take inputs in 2 dimensions
and give values in the third. This prevents the surface
from representing geometry that is more complex than
we intend. For example, we do not want to be able
to represent a sphere, because we do not expect small
patches of a larger object to resemble spheres.

• Fitting the surface to a point cloud should be efficient.
For that reason, we restrict ourselves to surfaces that
can be produced by sequences of linear solutions.

To meet these criteria, we fit a surface to a point cloud using
the following method:

1. We fit a plane to the point cloud using the standard
Ax+By + Cz +D = 0 equation.

2. We use the solved plane parameters to create a new
reference frame aligned with the plane. To recover the
other two axes (the plane normal is the third), we find
the most direct rotation that brings the Z-axis to meet
our normal, and rotate the X and Y axes by the same
rotation. The origin of our reference frame is the mean
of the point cloud, projected onto the plane.

3. We transform the point cloud into this reference frame.
To standardize the size of the point cloud, we divide by
the largest of the standard deviations of the three axes.
We don’t want to apply different scales for each axis,
as this would change the curvature of the point cloud.

4. We solve the system Ax2 +By2 +Cxy+Dx+Ey+
F = z. In order to limit ourselves to surfaces without
heavy curvature, we throw out any point clouds where
A, B, or C have an absolute value over 0.1.

All linear solves are performed either using standard linear
least squares, or SVD when the target values are all zero.

Determining if a point cloud is a smooth surface We
start by determining what small point cloud patches to at-
tempt to fit smooth surfaces to. We do the following:

1. We split up the point cloud using k-means M times.
This lets us look at M different splits of the point cloud.

2. We fail a patch immediately if it does not have enough
points. This limit is set based on expected density. In
our case, for a point cloud with 2000 points, this limit
was set to 15.

3. We use RANSAC to fit our smooth surface to the patch.
If 75% of the points in the patch fit the model, we pass
it. We consider a point as fitting the model if the Z
value predicted by the model is within a threshold of
the Z value of the point in the surface’s reference frame.
The threshold is computed as a function of the 3D size
of the patch, and in general needs to require that the
surface is much less thick than it is long or wide.

4. We compute the eigenvalues of the covariance matrix
of the patch, and reject any patches where more than
one of the values is similar in size to the inlier threshold.
This allows us to avoid fitting surfaces to lines.

Once we have a list of patches that were successfully repre-
sented by smooth surfaces, we do the following:

Surface Reconstruction from Point Clouds through Mixtures of Learned Primitives

1. We make a neighbor list for each patch that includes
the N closest other patches. In our implementation, we
used 30 for N.

2. For every pair of patches that are neighbors, we com-
bine their points and use RANSAC to fit a surface to
them. The pair is considered a surface if 95% of the
points are inliers.

3. We then find the unions of pairs with patch subsets in
common to produce our perceptual groupings.

Figure 7. Input box point cloud.

Figure 8. Box point cloud and perceptual split.

Figure 9. Input hourglass point cloud.

Sampling of results

Figure 10. Hourglass point cloud and perceptual split.

Future work The perceptual grouping method rarely
crosses perceptual lines, but it does happen. This is possible
when a smooth surface can be found in two patches from
two different surfaces that have a gap in between. This could
be solved by adding a requirement for surfaces to have their
points evenly distributed.

There are portions of each point cloud which are ignored
by this method, as random sampling is involved in finding
these surfaces. Also, we make the assumption that each
patch only contains a single surface. A more principled
method of splitting the point cloud into patches or a method
for extracting multiple distinct surfaces from a patch could
help to alleviate this.

The PartNet data set used to test this method has many
instances of double walling, where two versions of the same
surface exist side by side. This is difficult for our method
to deal with, due to the assumption that each patch only has
one surface. Removing this requirement should help in this
case.

Long, thin objects, such as the stem of a desk lamp, are not
well represented by these surfaces. Adding additional types
of objects such as cylinders may help.

	Introduction
	Related Work
	Methodology
	Probabilistic Surface Model
	Learning Surface Models via the EM algorithm
	Learning Surface Patches
	Initialization Strategies
	Algorithm

	Experiments
	Dataset
	Results

	Conclusion
	Alternative Grouping Strategies

