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Abstract
We explore a hierarchy based meta learning so-
lution to tackle complicated navigation environ-
ments, which traditionally trained flat policies find
difficult to solve. By decomposing the task down
to smaller components which are first learned in-
dependently by sub-policies and then using them
in conjunction via a master, we show that we
are able to successfully navigate to a given goal.
Moreover, we present novel regularization tech-
niques that ensure smooth transitions among the
sub-policies. We test the proposed methods in var-
ious environments wherein a four-legged agent is
rewarded for getting to a goal point and penalized
for instability. We show that hierarchical policies
are able to solve these complicated environments
while the flat policies fail. We further show that
our proposed regularization techniques produce
significantly better performing hierarchical sys-
tems.

1. Introduction
While the field of reinforcement learning has made signif-
icant advances in the past decade with respect to learning
novel tasks, it still suffers from the major setback of having
to learn these tasks from scratch. In contrast, humans use
prior knowledge gained from other tasks to aid learn the
task at hand. The field of meta learning aims to bridge this
gap by training the agent on a distribution of related tasks,
to then facilitate effortless learning of new tasks from the
same distribution.

While there exist various techniques to apply the meta-
learning paradigm to RL (Wang et al., 2016)(Gupta et al.,
2018), the hierarchical approach (Frans et al., 2017) pro-
pose is the most intuitive and interpretable one. In hierarchy-
based meta-learning, multiple policies are trained to perform
different, simple tasks. On encountering a new related but
possibly complicated task, a master policy, which governs
which policy to activate given an observation, is trained on
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top of these sub-policies. Since the sub-policies already
contain significant knowledge about the simpler tasks, the
master is easily able to learn to combine them. In this work,
we employ this hierarchy-based meta-learning approach
to move a four-legged agent to a goal. We first train four
sub-policies that move the agent in one of the four cardi-
nal directions each. We then train master policies on top
of these sub-policies to solve various complicated environ-
ments. Our work primarily differs from the work in (Frans
et al., 2017) in the following ways:

• Significantly harder environments: Apart from re-
warding closeness to the target points, our environ-
ments also penalize the agent for using too much
power and physical instability, which makes movement
harder.

• No joint resets: In (Frans et al., 2017), the authors
manually reset the joints of the robot periodically to
prevent it from getting stuck or toppling over. We do
not use any out-of-policy tweaks to help our agent, but
are still able to solve the environments.

• Regularizing for smooth transitions: To cope with
the previous points, we present novel regularization
techniques that help in smooth transitions among the
sub-policies, which prevents the agent from getting
stuck.

• Separate training of each sub-policy: We separately
train four sub-policy to learn to walk in four different
directions.

In Section 2 we present some relevant work in the rein-
forcement learning domain, specifically hierarchical and
meta-learning. This is followed by Section 3 where we
describe the environments we worked with for training the
master and the sub policies. In Section 4 we elaborate on the
core hierarchical model we used to build our experiments.
We describe the policy networks and training procedure for
both the master and the slaves. Section 5 describes the base-
line with which we compare our results. In section 6, we
describe the novel regularization techniques we introduce.
We elaborate on the experiments we conducted in section 7.
Section 8 contains a thorough analysis of our experiments.
Finally, we summarize our findings in section 9.
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2. Literature Review
Owing to the recent advances (Schulman et al.,
2015a)(Schulman et al., 2017)(Lillicrap et al., 2015), policy
gradient methods (Sutton et al., 2000) have become ubiq-
uitous for continuous control reinforcement learning in the
past decade. The development of Proximal Policy Optimiza-
tion (PPO) algorithm (Schulman et al., 2017) was prompted
by the need for policy gradient methods capable of taking
the largest step to improve performance while placing a
constraint on how close the new and old policies should
be without having to explicitly solve for the constraint, as
done in (Schulman et al., 2015a). The authors propose
two flavours of the PPO algorithm - the PPO-Penalty ap-
proximately penalizes the KL-divergence in the objective
function instead of making it a hard constraint, and auto-
matically adjusts the penalty coefficient over the course of
training so that its scaled appropriately. The PPO-Clip elim-
inates the KL-divergence term in the objective altogether,
and instead relies on a clipping in the objective function to
incentivize the new policy against going too far from the
old policy.

The paradigm shift towards hierarchy in RL was first in-
troduced in (Dayan & Hinton, 1993), which suggested the
use of various degrees of temporal resolution by using top
level managers, which assigns tasks to workers, which are
in turn, responsible for satisfying these tasks. Feudal RL
employs two core principles - information hiding, which
suggests that managers only need to know the system state
at their own level of hierarchy, and reward hiding, which
dictates that a manager must reward a sub-manager when
it completes its task irrespective of whether it satisfies the
commands of the super-managers. This leads to an abstrac-
tion in which the managers are unaware of how the workers
satisfy the task assigned to them. However, the feudal Q-
learning algorithm was tailored to the grid maze problem
and didn’t converge to any well-defined optimal policy.

(Sutton et al., 1999) proposed an alternative to model
continuous-time discrete-event systems by building on the
theory of Semi-Markov Decision Processes (SMDP), which
take into account the amount of time passed between deci-
sion time instants. In this setting, they define an option as a
triple consisting of the initiation set, the option’s policy, and
a termination condition. The framework consists of two lev-
els - the bottom sub-policy level, which outputs actions and
a top-policy level over options, which outputs sub-policies.
It was further optimized using intra-option learning, which
after each primitive action, updated all the options that could
have taken that action, and termination improvement, which
interrupted the execution of an option o whenever there is
another option o whose expected reward was greater. Unlike
feudal learning, if the action space consists of both primitive
actions and options, then an algorithm following the options

framework is proven to converge to an optimal policy.

Yet another approach in hierarchical learning was proposed
by (Dietterich, 1999), which argued for the decomposition
of the value function of an MDP into combinations of value
functions of smaller constituent MDPs where each sub-task
is defined by a termination predicate, a set of actions and a
pseudo reward. Formally, this was done by redefining the
Q function to take three arguments, Q(p, s, a) = V (s, a) +
C(p, s, a) where V represents the classical definition of Q
and C is the total reward expected from the performance of
the parent-task, p, after taking the action a. This approach,
called MAXQ learning, thus learns a recursively optimal
context-free ie. each subtask is optimally solved without
any reference to the context in which it was executed.

Further, in (Kulkarni et al., 2016), the authors use a DQN
framework to implement a gradient-based option learner, in
which a top-level value function learns a policy over intrinsic
goals, and a lower-level function learns a policy over atomic
actions to satisfy the given goals. They contend that this
flexibility in goal specifications provides an efficient space
for exploration in complicated environments.

While the methods described so far did incorporate hierar-
chy, they did not provide a framework to perform gradient
descent in the policy space without additional feedback in
terms of rewards. This was first proposed in (Bacon et al.,
2016), in which the managers’ output was trained with gradi-
ents coming directly from the worker without any additional
rewards or subgoals. In contrast to HDQN where descrip-
tions of the subgoals were given as inputs to the option
learners, option-critic was lauded as conceptually general as
it didn’t require intrinsic motivation for learning the options.

In the Meta Learning paradigm, (Finn et al., 2017) intro-
duced a model agnostic algorithm which trains a model on
a variety of learning tasks, to generalize to new tasks using
only a small sample of training data. This method can be
viewed from a feature learning standpoint as building an in-
ternal representation that is broadly suitable for many tasks.
The model trained via this method is thus shown to be easy
to fine tune. In their work in the RL setting, the authors use
policy gradient methods to estimate the gradient both for
the model gradient updates and the meta-optimization.

(Wang et al., 2016) describe another approach for meta-
reinforcement learning. They train a single RNN-based
policy over a distribution of MDPs. The recurrent network
allows the distribution over the actions at any given time-
step to be a function of the entire history seen by the agent
allowing the policy to adapt to any new, unseen MDP. We
can also interpret this as considering the entire distribution
over the MDPs to be a partially observable MDP and using
a recurrent network to solve that.

Finally, the work on Meta Learning Shared Hierarchy
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Figure 1. The AntWalker Environment; The red orb just denotes
the direction. The real target is 10km away in that direction.

(MLSH) by (Frans et al., 2017) builds upon this framework
by learning hierarchical policies consisting of sub-policies
that are executed for a fixed number of time steps and a
master policy whose action is to chose the sub policy to
execute for the next N time steps. The authors train such hi-
erarchies on a distribution over MDPs and are able to solve
complicated tasks.

3. Environments
We train our hierarchical model in two phases: sub-policy
training and master policy training. For the sub-policy train-
ing we define the AntWalker environment, and for the mas-
ter policy training we define AntBandit and AntMaze, as
explained below.

3.1. AntWalker

Four sub-policies are trained for each of the four cardinal
directions. The details of the environment are as follows -

• Agent: The agent is a four-legged ant-like robot.

• Target: Point along the axis 10km away for the corre-
sponding sub-policy in context, for example, for right,
the target is (10000, 0).

• Observation space: The agent observes the relative
position of the joints (16-dim), boolean information
about which feet are in contact with the ground (4-
dim), the relative change in height of the ant (1-dim),
the velocities of the agent from the point of view of the
agent (3-dim), the roll of the torso of the ant (1-dim),
the pitch of the torso (1-dim) and the sin and cos of the
roll, pitch and the yaw of the torso (6-dim), making the
observation space 32 dimensional.

• Action space: The torque applied to the different joints
of the ant (8-dim).

Figure 2. The AntBandit Environment

• Reward: The agent is rewarded for moving closer to
the target point with the reward for a step proportional
to the progress made in that particular step, and for
staying alive. The agent is penalized for colliding feet,
stuck joints and applying too much torque, incentiviz-
ing stability.

3.2. AntBandit

The AntBandit environment samples the goal point from
four potential points, and the agent must learn to get to the
chosen point.

• Agent: The agent is a four-legged ant-like robot.

• Target: The four potential target points are the four
corners of a square. At each reset of the environment,
one of these four points is randomly chosen as the
target.

• Observation space: The observation space con-
tains the 32-dimensional observation space of the
AntWalker, and the current x-y coordinates of the ant
(2-dim) and the x-y coordinates of the target (2-dim),
making the observation 36 dimensional.

• Action space: From the point of view of the sub-
policies or a flat policy, the action space is the same
as the previous environment. Of course, it is different
from the point of the view of the master policy.

• Rewards: As previously, the agent is rewarded for
moving closer to the target point with the reward pro-
portional to the progress per step in the potential field.
We test this environment both with and without the
stability penalties.

3.3. AntMaze

Apart from solving the AntBandit task, we try to solve a
more complicated task using the learned sub-policies. The



Learning to walking using HRL

Figure 3. The AntMaze environment

ant is placed in a maze and it is trained to reach a pre-
determined fixed point.

• Agent: The agent is a four-legged ant-like robot.

• Target: The target is a pre-determined fixed reachable
point in the maze.

• Observation space: The observation space con-
tains the 32-dimensional observation space of the
AntWalker, and the current x-y coordinates of the ant
(2-dim), making the observation space 34 dimensional.

• Action space: Same as AntBandit.

• Rewards: Same as AntBandit.

3.4. Implementation of the environments

Due to constraints on the use of Mujoco (Todorov et al.,
2012) on the AWS, the above environments were all imple-
mented from scratch in PyBullet (Erwin Coumans). The
vanilla Ant in PyBullet is heavier than the one in Mujoco,
encouraging it to typically have two or more legs on the
ground, making the problem a bit more difficult. Also note
that the walls in Figure 5 are actually connected, but a bug
in PyBullet halves the size of the rendering of the ”Box”
objects under certain circumstances.

4. The Hierarchical Policies
We use a two-level hierarchy of policies to solve the AntBan-
dit and the AntMaze environments. This master-slave archi-
tecture is presented in 4. The four slave policies move the
ant in one of the four cardinal directions each. After every
k time steps, the master policy decides which policy to run
next, where k is a hyperparameter.

As mentioned previously, the slave policies are trained in-
dependently on the AntWalker environment. Therefore, the
observation space that the slaves are trained on is different

from that offered by the AntMaze and the AntBandit en-
vironments. However, note that the observation space in
the AntWalker environment is a proper subset of that in the
other two. Therefore, we can simply strip away the extra
information when running the sub-policies. The master,
however, looks at the entire observation space when making
the decision on the sub-policies. Every time a sub-policy is
chosen, the reward observed by the master is the sum of the
rewards obtained throughout the k-step run of the chosen
sub-policy.

The action distributions given a state are diagonal-Gaussians
for all policies, with the mean and variance of the Gaussian
being learned functions of the state. The learned function
is modeled as a neural network with two tanh-activated
hidden layers with 64 units each. All policies are trained
in an actor-critic framework using PPO, with the critic also
modeled as a neural network with two tanh-activated hidden
layers with 64 units each.

5. The Flat Policies
For comparison, we also train non-hierarchical policies on
the AntMaze and the AntBandit environments. The policies,
unlike the slave policies in the hierarchical case, observe
the entire observation space, to make them comparable to
the hierarchical policies. Once again, the policies model
actions as diagonal-Gaussians given a state, with the mean
and variance of the Gaussian being learned functions of the
state. Moreover, similar to the previous case, the policies
are trained in an actor-critic framework with both the policy
and the value functions modeled as neural networks with
two tanh-activated hidden layers with 64 units each.

6. Regularization Techniques
Once the four policies from the AntWalker environment
are trained, using them together under a master can lead to
some unseen initial states for the sub-policies, leading to
the ant failing to stand stably. In our experiments, we found
the agent consistently failing to transition to an orthogonal
policy. In (Frans et al., 2017), the authors circumvent this
issue by periodically resetting the state of the ant. To handle
the issue without manual out-of-policy manipulations, we
propose the following regularization techniques. All of
these regularization techniques are employed while training
the four sub-policies in the AntWalker environment.

• Random Start Regularization - Perform random ac-
tions for the first t timesteps to randomize the initial
state before training, so the agent learns to recover
from unseen states.

• Random Repeated Regularization - Perform random
actions every t timesteps, so the randomization is inter-
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Figure 4. The two-level hierarchical model

spersed across the training iteration, helping the agent
learn better recovery techniques.

• Appropriate Bias Regularization - Based on the
prior knowledge that most of the transitions will occur
between orthogonal directions, the appropriate bias can
be added while training the model for the sub-policies.
For the first t timesteps, the learnt policy for a ran-
domly sampled orthogonal direction is run and then
training is started for the direction in consideration.
As handling transitions is our main goal, this method
seems to work best, with the transitions taking place
successfully almost always, once the model is trained.

In Section 8 we show the impact regularization creates in
the hierarchical models we develop.

7. Experiments
We conduct the following experiments:

• We first train four sub-policies on the AntWalker en-
vironment with and without the aforementioned reg-
ularization techniques. The rewards obtained by the
agent include penalties for applying too much torque
and instability.

• We train a master policy on the AntMaze environ-
ment on top of the regularized and non-regularized
sub-policies trained in the previous experiment.

• We train two flat policies on the AntMaze environment.
One of the flat policies is trained with the stability
penalties, while the other is trained without.

• We train a master policy on the AntBandit environ-
ment on top of the regularized and non-regularized
sub-policies trained in the first experiment.

Hyperparameter Value
Learning rate 3e-4
Discount factor 0.99
GAE λ 0.95
PPO clip ratio 0.2
Value loss coeff. 0.5
I 10
B 32

Table 1. The hyperparameters shared across all experiments

• We train two flat policies on the AntBandit environ-
ment. One of the flat policies is trained with the stabil-
ity penalties, while the other is trained without.

All policies are trained using the Proximal Policy Optimiza-
tion algorithm with a clipped surrogate objective(Schulman
et al., 2017) with Generalized Advantage Estimation (Schul-
man et al., 2015b) under an actor-critic framework. Both
the networks are trained using the Adam optimizer(Kingma
& Ba, 2014). The training schedule is characterized by three
integers S, I , and B:

1. Take S steps in the environment, resetting when neces-
sary and store the experience in a new storage.

2. Create B batches from the experience.

3. Iterate over the B batches I times and update the actor
and the critic by minimizing a weighted sum of the
PPO surrogate loss and the value loss.

4. Repeat

For all the experiments, the hyperparameters in Table 1
were the same. The hyperparameter S was different for
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Figure 5. Reward plot for the AntMaze environment

different experiments, since a single step from the point-
of-view of the master in case of a hierarchical policy is
equivalent to many steps from the point-of-view of the flat
policy. The S values are given in Table 2. The results on

Experiment S
Sub-policies 2048
AntMaze HRL 128
AntBandit HRL 40
AntMaze Flat 2048
AntBandit Flat 2048

Table 2. The number of environment steps between epochs for
each experiment. Note that for the hierarchical policies, the steps
are from the POV of the master.

the three environments are shown in Figures 6 to 10. To
get a cleaner plot, we average the reward over multiple
consecutive environment runs.

8. Analysis
The graphs in Figures 6 to 10 provide some interesting
insights. Note that for the AntMaze and the AntBandit
environments, even in the cases where stability penalties
are involved, only the reward corresponding to the distance
travelled is graphed. Also note that since the sub-policies
for a hierarchical system are already trained with stability
penalties, adding those penalties while training the master
does not make a difference.

For both the AntBandit (Figure 6) and the AntMaze (Figure
5) environments, we find that the regularized hierarchical
policy outperforms the flat policies by a significant margin.
As noted in Section 3, the observation space in both the
environments is enough for them to be solved by an ideal
reinforcement learning algorithm. Therefore, this is a fair

Figure 6. Reward plot for the AntBandit environment

Figure 7. Unregularized sub-policies training (AntWalker)

Figure 8. Regularized sub-policies training (AntWalker)
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Figure 9. Reward comparisons for HRL with regularized vs unreg-
ularized sub-policies for AntBandit

Figure 10. Reward comparisons for HRL with regularized vs un-
regularized sub-policies for AntMaze

comparison. Again, this is expected, as the search space for
a master policy is much smaller than the search space for
a flat policy, as a single action of the master changes the
state of the environment by a large amount in a potentially
useful way. Another interesting thing to note is that the flat
policies without the stability penalties perform better than
the ones with the penalties. This is again expected as in the
environment without the penalties, the robot only focuses
on optimizing the reward obtained by moving closer to the
target.

Comparing the unregularized and regularized sub-policy
training graphs, it is apparent that the unregularized sub-
policies show a considerably smaller variance. This is ex-
pected as the regularization procedure described in Section
6 involves taking random steps at the beginning or in the
middle of a run, thereby increasing the overall stochasticity.
The unregularized policies do achieve higher rewards even-
tually, but they do not allow smooth transitions among the

policies.

Our hypothesis is validated when we compare the rewards
reaped by the unregularized and the regularized sub-policies
when a master is trained over them (Figure 9 and Figure 10).
The regularized sub-policies serve as much better slaves.
Furthermore, the difference is much more pronounced in
the AntMaze environment as it is significantly more compli-
cated and requires multiple transitions among the policies,
while the AntBandit requires only one in the ideal case.

9. Conclusion
We have presented an attempt to solve complicated envi-
ronments using a hierarchy of policies. Even though the
environments created are MDPs, traditional flat policies find
it difficult to solve them and get stuck in local minima. For
example, in the AntMaze environment, if the agent tries to
move in a straight line toward the target, it will get stuck in
a wall, which is what happens in the case of (non-penalized)
flat policies. Setting up a hierarchy shrinks the space for
the master, and allows it to explore much more efficiently,
allowing it to avoid these local minima. Furthermore, we
present novel regularization techniques that help in learning
robust sub-policies in a hierarchical settings by training for
smoother transitions among them. Our results show that
these techniques induce significant gains in the performance.
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