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Abstract
We study the finite-horizon dynamic portfolio
management problem with risky assets with mean-
reverting (Ornstein- Uhlenbeck) dynamic in the
presence of transaction costs. The goal is to maxi-
mize the expected constant relative risk aversion
(CRRA) utility of terminal wealth. First, we an-
alytically solve the problem without transaction
costs for a single risky asset and a risk free as-
set, and then derive the solution to a portfolio of
Ornstein-Uhlenbeck assets via a system of ordi-
nary differential equations (ODEs). The portfolio
optimization problem becomes intractable both
analytically and computationally when there ex-
ist transaction costs and multiple assets. To ad-
dress transaction costs, we propose a novel numer-
ical approach employing deep neural networks,
building on the previous ODE solutions and given
the standard No-Trade region policy rules. We
establish a model-based reinforcement learning
frame work on the dynamic portfolio task, and
our method readily extends to high-dimensional
portfolio problems wherein traditional methods
fail. Experiments with synthetic and market data
show the numerical benefits of the developed al-
gorithms.

1. Introduction
Since the 1970s, the dynamic portfolio optimization prob-
lem has long been an essential topic in the field of math-
ematical finance that draws the attention of scholars and
partioners alike. Merton (Merton, 1969; 1975) established
the framework for dynamic portfolio choice with stochas-
tic variation in investment opportunities, and with the ab-
sence of transaction cost, one could explicitly solve the
continuous-time portfolio problem where the investor can
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invest between stocks modeled as geometric Brownian mo-
tions and a money market account with a fixed risk-free
rate to maximize the expected utility of consumption and
terminal wealth.

There has been a vast amount of literature extending Mer-
ton’s problem from different perspectives. One main stream
is to incorporate the stock return predictability into portfolio
optimization, for example, modeling the stock returns as
Ornstein-Uhlenbeck processes 1, see (Campbell & Viceira,
1999). Another interesting aspect is to take the inflation and
risk free rate into account, see (Munk et al., 2004). More-
over, researchers also consider other types of utility function,
such as constant relative risk aversion utility (CRRA) (Liu,
2006) or mean-variance utility (Johnstone et al., 2013).

In the studies mentioned above, the optimal trading strategy
is solved either analytically or approximately by assuming
no transaction cost. However, dynamic portfolio optimiza-
tion often requires frequent rebalancing, hence transaction
costs are usually not negligible. Such trading costs are
caused by several factors such as the bid-ask spread, exe-
cution commissions, market depth, price impact or tax, etc.
Intuitively, with the presence of transaction costs, the opti-
mal trading strategy in the frictionless market needs to be
modified since it might not be optimal to adjust the portfolio
if the change of the stock is small, which means there might
exist the so-called no-trade zone.

As early as in 1976, Magill and Constantinides initiated the
research in transaction costs by proposing that the investor
only trades in securities when the variation in the underlying
security prices forces his portfolio proportions outside this
no-trade zone (Magill & Constantinides, 1976). Davis and
Norman were the first to provide a detailed formulation and
analysis, along with an algorithm and numerical compu-
tation of the optimal policy for an infinite-horizon invest-
ment and consumption decision problem (Davis & Norman,
1990). Shreve and Soner relaxed several assumptions in
Davis and Norman’s work and conducted an analysis of the
optimal trading and strategies in an infinite horizon. They
proved existence, uniqueness and regularity of the value
function with respect to the utility (Shreve et al., 1994). Liu
and Loewenstein focused on the infinite-horizon optimal
trading problem with a single risky asset. The multi-asset

1https://en.wikipedia.org/wiki/OrnsteinUhlenbeck process
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portfolio optimization problem is more difficult to solve (Liu
& Loewenstein, 2002). Liu obtained an almost closed form
solution for proportional costs in continuous time for infi-
nite lived constant absolute risk aversion (CARA) investors
when asset returns are uncorrelated (Liu, 2004).

On the other hand, during the recent years, deep learning
as well as deep reinforcement learning have made break-
throughs in many areas such as image recognition, game
playing as well as in the finance industry. Culkin and Das
surveyed how and why deep learning can influence the field
of finance in a very general way with a specific application to
reproducing the Black and Scholes option pricing formula 2

to a high degree of accuracy by training a fully-connected
feed-forward deep learning neural network (Culkin & Das,
2017). E et al. proposed a new method for solving high-
dimensional fully nonlinear second-order partial differential
equations (PDEs) herein (E et al., 2017). The PDEs are
reformulated as a control theory problem with the gradient
of the unknown solution approximated by neural networks,
like deep reinforcement learning with the gradient acting
as the policy function. Their technique has inspired us to
use deep neural network to solve the free boundary HJB
equation.

In this work, we consider a relatively practical setting.

First, for the comparison baseline, we analytically solve
the portfolio problem without transaction costs for a risk
free asset and a single risky asset. We model the asset
prices, rather than asset returns or risk premiums as in many
other works in the literature, as Ornstein-Uhlenbeck process,
then derive the solution by solving a system of ordinary
differential equations (ODEs). Therefore, we would get a
comparison baseline as well as a suggestion to propose the
hierarchical architecture.

Next, we extend the model to correlated multi-assets portfo-
lio with the presence of transaction cost. Most importantly,
when there are multiple assets in the frinctional market,
the portfolio optimization problem becomes intractable. In-
stead, we build a hierarchical architecture and develop a
novel numerical method using deep reinforcement learn-
ing to parametrize the trading boundaries of the no-trade
zone in a dynamic fashion. A very interesting observation,
as is pointed out by Matt Emschwiller, Benjamin Petit and
Jean-Philippe Bouchaud in their working paper, is that when
the number of assets is significantly large, we can use the
mean-field approximation to this problem, which we could
use as another comparison baseline in our calibration.

By the design of the algorithm, our method is scalable to the
high dimensional case. To our best of knowledge, previous
work has not been done to study the transaction boundary
in the high dimensional case with asset prices modeled as

2https://en.wikipedia.org/wiki/BlackScholes model

correlated Brownian motions or mean-reverting processes.

The organization of this work is as follows: in Section
2, we derive the theoretical results of stationary limits of
optimal allocation problem under both the frictionless and
the frictional assumption. We also show our parametrization
and discretization scheme in this section.

Section 3 describes our hierarchical architecture and
the associated deep neural network (DNN) approach to
parametrize the No-Trade zone and optimal trading strategy
based on no-trade zone. It also provides training procedure
of the DNN and the simulation results to illustrate how trans-
action cost affect the No-Trade zone from calibrating the
market data, which is the 2013 VIX front month future data,
see D.

Section 4 We discuss our results as well as point out possible
future directions.

2. Theoretical result
We first derive an explicit solution for the optimal trading
strategy when there is no transaction cost. We then introduce
proportional transaction cost, and use previously derived
strategy as as a warm start for our policy search transaction
cost is introduced. When there is transaction cost, the trad-
ing strategy depends on a region called no trade zone. We
use Deep Neural Network to parametrize this no trade zone
hence the optimal trading policy.

2.1. Optimal Strategy With Zero Transaction Cost

Suppose there is one risky asset whose price Xt follows
an Ornstein-Uhlenbeck (OU) process and a money market
account value by Yt:

dXt = α(µ−Xt)dt+ σdZt (1)
dYt = rYtdt (2)

where α ∈ R+, σ ∈ R+ and µ ∈ R are parameters of the
OU process and Zt denotes the standard Brownian motion,
r ∈ R is the constant risk free rate. Let π(t) ∈ R be the
current proportion of wealth invested in the risky asset at
time t. The total wealth Wt follows:

dWt

Wt
= πt

dXt

Xt
+ (1− πt)

dYt
Yt

(3)

Our goal is to maximize the expected utility of the terminal
wealth WT at a given finite horizon T :

max
π

E[Uγ(WT )] (4)

where we choose Uγ(W ) to be the CRRA utility: U(W ) =
W 1−γ−1

1−γ for γ > 1.

The above problem could be solved using Dynamic
Programming Principle, in particular we can derive
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the continuous time version of the Bellman equation
called Hamilton-Jacobi-Bellman (HJB) equation. Let
τ = T − t be the horizon of the investment period. Assume
V (W,X, τ) to be the value function which satisfies the
boundary condition V (W,X, 0) = U(W ). We derive the
Hamilton-Jacobi-Bellman equation:

max
π

{
− Vτ +

[πα
X

(µ−X) + (1− π)r
]
WVW+

1

2
(
πσ

X
)2W 2VWW + α(µ−X)VX +

1

2
σ2VXX+

σ
πσ

X
WVWX

}
= 0 (5)

where Vτ ,VW , and VX denote the derivatives of V with
respect to t, W , and X respectively. Similarly, VWW , VXX
and VWX denote the higher derivatives. We can solve the
explicit solution of optimal asset allocation:

π∗(τ,X) =
1

γ

[α(µ−X)/X − r

(σ/X)2

]
+

1 − γ

γ

[
C(τ)X +B(τ)

]
X.

(6)

where formula of A(τ) and B(τ) as well as detailed
derivation of the solution can be found in Appendix. This
π ∗ (τ,X) will serve as our warm start to tackle optimal
trading problem with proportional transaction cost.

2.2. Calibration of Parameters

To calibrate the real-world data, we are essentially dealing
with the modeling and forecasting of time series, which has
fundamental importance to various fields. Therefore, a lot
of active research works are going on in this subject during
recent years. However, there is a challenge: since for time
series, typically only one path, or only one realization to
be more precisely, is available, all of the conclusions about
the time series must be drawn based on the information
extracted from this single path.

In this work, our assumption on the price of the risky assets
is given by (1). By fitting the Orstein-Ulenceck process
using the traditional MSE loss, we are able to estimate the
mean level µ and the return rate α, and we plot the 1-yr
stock price against our estimation in order to illustrate the
mean-reverting behavior of the stock price.

Figure 1. Calibration of the mean level µ and mean-return rate α.

2.3. Trading Strategy With Proportional Cost

2.3.1. CONCEPT OF NO-TRADE REGION

Figure 2. Example of a No-Trade zone and corresponding rebal-
ancing rule.

In practice it is common to to pay proportional transaction
cost with a rate λ, meaning that every trade with notional
(dollar amount) Z pays λZ transaction fee. It is not optimal
to continuously rebalance the portfolio with transaction cost
as the profit from rebalancing may not cover the transaction
fee. Based on (Shreve et al., 1994), the optimal trading
strategy is given by a No-Trade zone. Within the No-Trade
zone, no rebalance is needed to avoid the transaction
cost. Outside the No-Trade zone, one should rebalance
the portfolio to the boundary of the No-Trade zone.
However, the boundaries of No-Trade zone is unknown.
Traditionally the boundaries are identified by solving Partial
Differential Equations (PDE) with free boundary conditions.
However this approach is computationally intractable when
dimension of asset is greater than 2. In this section we tried
to use Deep Neural Network to parametrize the boundary
of the No-Trade zone, this method is applicable to high
dimensional case when number of assets is greater 2.
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We use a graph to illustrate the concept of No-Trade zone.
Recall that the asset price is mean reverting, hence the opti-
mal strategy is to buy the asset when its price is below the
mean level and sell it when its price is above the mean level.
With transaction cost, we only buy the asset when its price is
below the mean level to some certain extent and sell it con-
versely. The No-Trade zone in Figure. 2 is simulated with
parameters estimated from VIX future in year 2013-2014
and the assumption that there is a 2% transaction cost. The
No-Trade zone is for tk = 0.4 when investment horizon is
[0, T ] = [0, 1]. The blue curve denotes the lower boundary
of No-Trade zone and orange curve is the upper boundary
of the No-Trade zone. The region between two curves is
the No-Trade zone. The mean reverting level is 15.4463. X-
axis denotes the observed risky asset price, Y-axis denotes
the proportion of total wealth invested in risky asset.

• Red point a = (14.73,−0.5). This point means ob-
served asset price is Xtk = 14.73, before rebalanc-
ing the proportion πtk− invested in risky asset is -
0.5, i.e. we are using 50% of our wealth to short the
asset. However, 14.73 is below the mean reverting
level 15.4463 hence we should switch our position to
long the asset, we rebalance our position to blue point
a′ = (14.73, 0.32) on the lower boundary of the No-
Trade zone which means we put πtk+ = 32% of our
wealth to long the asset.

• Orange point c = (15.5, 0.1). This point means
Xtk = 15.5 and πtk− = 0.1. This point lies in the
No-Trade zone hence no action is needed. Because
15.5 is close to mean reverting level, the price change
in near future will be mainly driven by noise, there is
no deterministic trend hence we should not rebalance
to avoid transaction cost.

• Green point b = (16.13, 0.75). This point means
Xtk = 16.73 and before rebalancing we are us-
ing using 75% of our wealth to long the asset. Be-
cause 16.73 is well above the mean reverting level,
we should switch our long position to short position
πtk+ = −0.71 i.e. putting 71% of our wealth to short
the asset. We move from the green point b to the purple
point b′ on the upper boundary of the No-Trade zone.

2.3.2. THEORETICAL CHARACTERIZATION OF
NO-TRADE REGION

In this section we use dynamic programming principle to
derive the Hamilton-Jacobi-Bellman equation for the value
function when proportional transaction cost is present. We
give an economic interpretation of the No-Trade region. We

will see that the value function is characterized by a vari-
ational inequality, whose explicit solution is not available
and finding its numerical solution suffers curse of dimen-
sionality, therefore using Neural Network to approximate
the No-Trade region becomes desirable.

We keep assumption as we did for frictionless case, i.e.
trading a risky asset with price Xt and a risk free asset
with price Yt. We introduce transaction cost λ and two
non-decreasing adapted process Lt and Mt that describe the
cumulative transfers from the safe asset to the risky asset
and vice versa, we always assume the transaction cost is
deducted from the safe asset account, then let At denote
the value of safety asset account, let Bt denote the value of
risky asset account, we have:

dAt = rAtdt− (1 + λ)dLt + (1− λ)dMt (7)

dBt =
Bt
Xt
dXt + dLt − dMt (8)

The value function will take 4 arguments (t, At, Bt, Xt) as
argument. The agent needs to make decision based on time
to maturity T−t, its risky / safety asset account value and the
current asset price. We can use dynamic programming prin-
ciple to derive the Hamilton-Jacobi-Bellman equation as we
did for frictionless case, we use vt to denote ∂

∂tv(t, a, b, s),
and similar convention applies to va, vb and vx:

sup
dLt,dMt

[[
va − (1 + λ)vb

]dLt
dt

+
[
(1− λ)vb − va

]dMt

dt

]
+ vt + rbvb +

a

x
α(µ− x)va + α(µ− x)vx

+
a2

x2
σ2vaa + σ2 a

x
vax = 0

We can see that the No-Trade region is characterized by the
value function:

NT = {(t, a, b, x)|(1 + λ)vb > va > (1− λ)vb} (9)

We consider three different scenarios and explain why NT
region is characterized by above formulation, our discus-
sion gives theoretical justification of three bullet points we
discussed at the end of last subsection:

• (1+λ)vb > va > (1−λ)vb: taking sup over dMt and
dLt yields dMt = dLt = 0, this means there should
be no trade at all, hence the name No-Trade region.
When this is the case, the marginal utility gained from
increasing one account cannot offset the marginal util-
ity loss of drawing another account upon taking into
effect of transaction cost, hence there should be no
rebalancing.

• va > (1 + λ)vb: the marginal utility of increasing the
risky account is high enough, the optimal strategy is
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to buy risky asset at infinite rate dLt/dt = ∞ until
va = (1 + λ)vb, i.e. we ajust out position back to
No-Trade region.

• va < (1− λ)vb: the mariginal utility of (short) selling
the risky asset is high enough, the optimal strategy is
to sell riksy aseet at infinite rate dMt/dt = ∞ until
va = (1− λ)vb, i.e. we are back to the NT region.

In conclusion, the value function solves the following varia-
tional inequality:

0 = max

[
vt + rbvb +

a

x
α(µ− x)va + α(µ− x)vx+

a2

x2
σ2vaa + σ2 a

x
vax, (1 + λ)vb − va, va − (1− λ)vb

]
The explicit solution for the variational inequality does not
exist, and it is computational costly to find its numerical so-
lution. In particular, if we consider two risky asset, then find-
ing numerical solution for variational inequality of above
type becomes intractable. Therefore it is reasonable to find
approximation method for the No-Trade region.

2.3.3. NO-TRADE REGION PARAMETERIZATION

We discretize the continuous time interval [0, T ] to N subin-
tervals with equal length. At a particular time step tk, No-
Trade region is determined by its lower and upper boundary
as we see in Fig.2. In particular, when transaction cost rate
λ = 0, No-Trade zone degenerates to a curve we derived
in Eq.28. When λ becomes larger, No-Trade region grows
wider. We utilize our prior knowledge of π∗ when λ = 0 as
a warm start, and use Deep Neural Network to parameterize
lower and upper boundary of the No-Trade Zone:

rtku (x) ≈ π∗(tk, x) + fθutk
(x), (10)

rtkd (x) ≈ π∗(tk, x)− fθdtk (x), (11)

where rtku (x) is the upper boundary of No-Trade region
and rtkd (x) is lower boundary of No-Trade region. For
implementation, both rtku (x) and rtkd (x) are constructed
as a 3-layer fully connected Neural Network with ReLU
activation and Batch Normalization. The number of hidden
units are [20, 40, 80].

2.3.4. PARAMETERIZATION TRADING STRATEGY

The rebalancing strategy follows the illustration in Fig.2,
when our (asset price, position) pair is within the No-
Trade region we do not do rebalancing, otherwise we rebal-
ance our position towards the boundary of No-Trade region.
More specifically, when we arrive at time tk, the propor-
tion we invested in risky asset is πtk−, we rebalance the

proportion to πtk+ using the following policy:

πtk+ =


rtkl (Xtk) πtk− < rtkl (Xtk)

πtk− rtkl (Xtk) ≤ πtk− ≤ rtku (Xtk)

rtku (Xtk) πtk− > rtku (Xtk)

(12)

2.3.5. DISCRETIZATION OF THE DYNAMICAL SYSTEM

Similar to the theoretical study in the literature (Shreve et al.,
1994; Liu, 2004; Muhle-Karbe et al., 2017), we assume
the frictional market has proportional transaction cost with
rate λ, symmetrically penalizing on both buying and selling
activities. Therefore, the transaction cost at each time period
with respect to the rebalancing operation is:

ctk = λWtk |πtk+ − πtk−| (13)

According to the continuous time dynamics formula, after
introducing the transaction costs at each time step, we can
write out the system dynamics from tk−1 to tk by discretiz-
ing Eq.1-3, detailed formulas can be found in Appendix.
Notice that this learning task is essentially a reinforcement
learning task, therefore we need to simulate sample paths in
the frictional market and use the sample paths as our input
in order to learn the optimal trading policy. Moreover, we
need to regularize our starting point at the same level. At
the beginning of each training epoch, we start at t0 = 0 with
n sample paths initialized as:

X0 = [x0, ..., x0]T1×n,

W0 = [w0, ..., w0]T1×n,

π0− = [0, ..., 0]T1×n.

At each time step tk our position rebalances from the output
of the neural network rtku (x) and rtkd (x) together with the
rebalancing rule (12). We then move to the next time step
tk+1 using equations (29)-(31). At terminal time T , the
n × 1 vector WT represents the terminal wealth over n
sample paths, and the empirical loss over n sample paths is
defined as:

loss
∆
=

1

n

n∑
i=1

−U(W
(i)
T ) (14)

2.3.6. DESIGN OF THE STRUCTURE OF THE DEEP
NEURAL NETWORK

The computational graph defines the data-flow of the deep
neural network (Figure. 5 in Appendix). In the computa-
tional graph, ‘Rebalance Rule’ (rtl (x), rtu(x)) follows equa-
tion (12), ‘System Dynamics’ (X,W, π) follows equations
(29)-(31).
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Notice that, the ‘Rebalance Rule’ (rtl (x), rtu(x)) depends
not only on the price of the risky asset, but also depends on
the time to maturity. In reality this makes sense, because
as time getting closer and closer to maturity T , there is less
and less time left for the price of the risky asset returns to
its mean.

Based on equations (12), the π∗(tk, x) is known. There-
fore our learning algorithm is mainly focused on learning a
pair of non-negative functions (fθdtk

(x), fθutk
(x)). If we still

assume the pair (fθdtk
(x), fθutk

(x)) has time dependence,
it will introduce a significantly larger number of tuning
parameter, which will make us face the curse of dimen-
tionality as we are using finer discretization scheme. On
the other hand, through a rigorous reasoning as well as our
simulation results, the time dependence of the ‘Rebalance
Rule’ (rtl (x), rtu(x)) is solely captured by the frictionless
optimal strategy π∗. In summary, we can use one single
time-independent Deep Neural Network to learn the pair
(fθdtk

(x), fθutk
(x)):

fθutk
(x) = fθu(x) (15)

fθdtk
(x) = fθd(x) (16)

We summarize the hyperparameters we use in the following
table:

µ α σ

15.446 0.113× 252 0.606×
√

252
T N r
1 (year) 252 0.05
X0 W0 γ
13.950 100 2

3. Numerical Results
In this section, we provide numerical experiments with real
data. We first describe the method of constructing mean-
reverting tradable assets. Although the discovery of pairs is
not the focus of this paper, the construction process is im-
portant for us to estimate the transaction cost. Followed by
that, we present the backtest results of a single and multiple
risky assets portfolio for year 2014-2017. In particular, we
are able to solve the multi-asset portfolio choice problem
with 48 Orstein-Ulenbeck assets, 1 risk-free asset and 50
time steps in 3 hours computer time, which is considerable
faster than traditional numerical methods that has long been
used in this field.

To illustrate our learnt policy, we will present our results
with one single risky assets with mean-reverting dynamics.

3.1. Shape of the No-trade Zone

In order to incorporate our model with real-world case sce-
nario, we use parameters calicrated from 2013 VIX front
month future data as shown in 2.2, the simulation results il-
lustrate how transaction cost affect the No-Trade zone. The
network structure and the optimal hyperparameters we use
are shown in the following table:

Structure # of units Activation
3 hidden [20,40,80] ReLU
Batch Normalization Optimizer Epochs
True Adam 3000
Learning rate Learning Rate Decay
0.01 decay to its 1/2 every 500 epochs

At each training step, we generate 1000 sample paths. We
use Adam optimizer with a starting learning rate l = 0.1 and
decay to its 1/2 every 500 training steps. We stop training
after 3000 steps. We let [0, T ] = [0, 1] to denote a trading
year, and discretize it toN = 252 intervals, each subinterval
represents a single trading day. We run experiments on
different transaction cost rate λ and plot the corresponding
No-Trade zone at a certain time step:

Figure 3. No-Trade Region at t = 0.4 for different proportional
transaction cost rate.

In Figure 3, ‘lb’ denotes the lower boundary and ‘ub’ de-
notes the upper boundary of the No-Trade zone, percentage
number denotes the transaction cost rate λ in (13) and varies
from 0.7% to 2.8%. As expected, the No-Trade zone gets
wider as the transaction cost increases.

3.2. Comparison Results

We have shown in Sec.3 that DNN learned No-Trade Region
meets our intuitions. We have yet to show the optimal
trading strategy learned by DNN is better than some baseline
strategy.
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Figure 4. Comparison of the averaged terminal utility and wealth
over 10000 sample paths.

4. Discussion and extension
In this work, we present a deep-learning method for solving
the portfolio optimization problem where the underlying
assets follow Ornstein-Uhlenbeck processes and transaction
costs are not negligible. We formulated this as a supervised
learning problem using deep neural network to approximate
the boundaries of the NT zones and based on the ODE
solutions for the no transaction cost case.

Backtest with real data for year 2014-2017 shows the strat-
egy performs well in both one-asset and multi-asset cases,
yielding the 35% annual return in the single asset case and
doubling the initial wealth each year in the multi-asset case.
Importantly, our method based on DNN enjoys superb run-
time efficiency. It doesnt suffer from curse of dimensionality
as other conventional numerical methods. Hence the trading
strategy can be extended to portfolios with a large number
of assets This opens a door for future research opportunities
as one can further test out other promising neural network
architectures or to combine with the reinforcement learning
to explore better dynamic trading strategies.

We develop the optimal solution under zero transaction cost
assumption, then use the frictionless policy as a warm start

for our portfolio optimization problem. We parametrize the
No-Trade Zone hence the trading policy using neural net-
work. We repeatedly generate new sample paths according
to the system dynamic equations and minimize the loss
over all of the sample paths. The experiment on synthetic
data shows the learned optimal policy by DNN outperforms
the analytic solution we derived under zero transaction cost
assumption and the baseline strategy of fully invest in risk-
free assets. We pointed out and illustrated that our approach,
in the same spirit as the method by (E et al., 2017), could
be applied for solving high-dimensional assets allocation
problem.

Another interesting possible direction is the small transac-
tion costs scenario. When transaction cost λ is close to 0,
there is an asymptotic approximation formula for the No-
Trade region given by (Muhle-Karbe et al., 2017). However,
since their settings are quite different than our settings, i.e.
they are essentially assume a quadratic penalty on the trad-
ing rate, whereas in our model the penalty is directly con the
total trading volume. In our future work, we would explore
the proportional small trading analysis and then show our
learned strategy matches the asymptotic strategy derived by
(Muhle-Karbe et al., 2017).
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A. Solution of HJB equation and Optimal
Trading Strategy

When there is no transaction cost, we get following HJB
equation of the value function:

max
π

{
− Vτ +

[πα
X

(µ−X) + (1− π)r
]
WVW+

1

2
(
πσ

X
)2W 2VWW + α(µ−X)VX +

1

2
σ2VXX+

σ
πσ

X
WVWX

}
= 0 (17)

From HJB equation we can compute the optimal asset allo-
cation:

π∗(τ,X,W ) = − VW
WVWW

[α(µ−X)/X − r
(σ/X)2

]
− XVWX

WVWW

(18)

The HJB equation is solved by first “guessing” a general
form for the solution and then verified later. We assume the
value function V takes the form:

V (W,X, τ) =
(Wφ(τ))1−γ − 1

1− γ
(19)

φ(τ) = exp(A(τ) +B(τ)X + C(τ)X2/2) (20)
A(0) = B(0) = C(0) = 0 (21)

Substituting π∗ in (18) and the guessed value function
(19)-(21) into Eq.5 generates a quadratic equation of Xt.
Making all the coefficients zeros, we obtain the following
ODE system of A(τ), B(τ) and C(τ):

C ′(τ) = aC2(τ) + bC(τ) + c (22)

B′(τ) = aB(τ)C(τ) +
b

2
B(τ) + dC(τ) + g (23)

A′(τ) =
a

2
B(τ)2 + dB(τ) +

σ2

2
C(τ) +

(αµ)2

2γσ2
+ r

(24)

with boundary condition A(0) = B(0) = C(0) = 0 and
parameters:

a =
1− γ
γ

σ2 b =
2(γr − r − α)

γ

c =
(α+ r)2

γσ2
d =

αµ

γ
g = −αµ(α+ r)

γσ2

The ODE system can be solved sequentially for explicit
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solution:

C(τ) =
2c(1− e−ητ )

2η − (b+ η)(1− e−ητ )
(25)

B(τ) =
−4gr(1− e−ητ/2)2 + 2gη(1− e−ητ )

η[2η − (b+ η)(1− e−ητ )]
(26)

A(τ) =

∫ τ

0

a

2
B(t)2 + dB(t) +

σ2

2
C(t) +

(αµ)2

2γσ2
+ rdt

(27)

with η =
√
b2 − 4ac, we can then plug in B(τ) and C(τ)

into EQ.18 to get the optimal trading strategy:

π∗(τ,X) =
1

γ

[α(µ−X)/X − r

(σ/X)2

]
+

1 − γ

γ

[
C(τ)X +B(τ)

]
X.

(28)

B. Discretization Formula for System
Dynamics

We use ∆tk−1
X to denote the discretized change in the price

of the risky asset and similar convention applies to ∆tk−1
Y

and ∆tk−1
W ,

∆tk−1
X = (e−αh − 1)Xtk−1

+ µ(1− e−αh)

+N(t, h) (29)

∆tk−1
Y = (erh − 1)Ytk−1

(30)

∆tk−1
W =

πt+k−1
Wtk−1

Xtk−1

∆tk−1
X

+
(1− π+

tk−1
)Wtk−1

Ytk−1

∆tk−1
Y − ctk−1

(31)

where

N(t, h) := σe−α(t+h)

∫ t+h

t

eαudZu

∼ N(0,
σ2(1− e−2αh)

2α
),

h := tk − tk−1 =
T

N
.

Figure 5. Computational Graph of DNN.
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C. Computational Graph of DNN

D. Data
D.1. Λ for Year 2014-2017

Figure 6. Λ for Year 2014-2017.

D.2. ΣOU for Year 2014

Figure 7. ΣOU for Year 2014.
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D.3. ΣOU for Year 2015

Figure 8. ΣOU for Year 2015.

D.4. ΣOU for Year 2016

Figure 9. ΣOU for Year 2016.
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D.5. ΣOU for Year 2017

Figure 10. ΣOU for Year 2017.


