
Network Learning for Neural Model Interpretability

Aakanksha Naik (anaik) 1 Alankar Jain (alankarj) 1 Aldrian Obaja Muis (amuis) 1

Abstract

Interpretability for neural network models is a
trending topic in NLP, with some preliminary
definitions of what it means to have an inter-
pretable model. In this project, we focus on
one form of interpretability (called partial de-
composability) by learning an undirected depen-
dency graph between neurons in a neural net-
work, in the hope of uncovering groups of corre-
lated nodes. We treat these groups as “concepts”
learned by the network and manifest the interpre-
tation of said concepts through prototypical ex-
amples (Melis & Jaakkola, 2018). Finally, we
compare the interpretability of groups extracted
by our approach to components extracted via Sin-
gular Value Decomposition (SVD). We apply our
method on both synthetic and real NLP data (sen-
timent analysis; NLI) and uncover interesting in-
sights.

1. Introduction and Motivation
Model interpretability is a key problem in machine learn-
ing, as it helps users understand the reasoning behind
model predictions better. For example, in survival analy-
sis, understanding why a model predicts a certain lifespan
for a person can greatly help justify the risk assessment for
insurance purposes. When using linear models with hand-
crafted features for a task, it is easy to identify which fea-
tures influenced the final decision based on feature weights.
However, as we see neural models being used more owing
to their superior performance, interpretability has started to
emerge as an important open challenge.

The precise definition of model interpretability that is use-
ful practically is still not agreed upon by the community at
large. Lipton (2017) discusses various definitions of model
interpretability. In this work, we focus on the notion of
interpretability as (partial) decomposability, where some

1Carnegie Mellon University, Pittsburgh, PA 15213, USA.

10708 Class Project, Spring, 2019.
Copyright 2019 by the author(s).

components of the model in question lend themselves to
an intuitive explanation. The research question that we are
tackling is: given a model that is not interpretable in the
decomposability sense, how can we uncover intuitive ex-
planations for each component of the model?

As noted by Raghu et al. (2017), neurons in a neural model
might be correlated. These correlations can result in re-
dundancy while assigning intuitive explanations to network
components, so they need to first be removed. Another
application of decorrelating neurons is in co-training (Yu
et al., 2011), which requires that the feature sets used by
different views be independent. To remove this correlation,
they use SVD to extract orthogonal vectors representing the
same information as the original network.

In this project, we propose an alternative method, which
is based on network learning with LASSO (Meinshausen
et al., 2006), to discover correlations between neurons, and
subsequently use the learned network structure as the ba-
sis to form units of interpretations. To complete the inter-
pretability pipeline, we follow the idea proposed by Melis
& Jaakkola (2018) of extracting prototypical examples as
intuitive explanations for components in a neural model.

In summary, our contributions are as follows:

1. We propose to use network learning to find correlations
between neurons in a neural network, and to use this as a
basis for units of interpretation.
2. We compare our proposed method with SVD, an
existing baseline for decorrelating neurons.
3. We show the feasibility of our proposed method through
experiments on a synthetic dataset and on two concrete
NLP tasks: sentiment analysis and natural language
inference.

2. Related Work
Model Interpretability The problem of interpretabil-
ity for neural network models has been approached from
various angles, as summarized by Lipton (2017). For
this project, we focus on the notion of “interpretability”
as partial decomposability. We interpret decomposabil-
ity as human-interpretable explanations for sub-modules

Network Learning for Neural Model Interpretability

of a neural model. Prior work on creating such human-
interpretable proxies for neural models can broadly be di-
vided into two categories. The first class of techniques
focus on training networks to generate these explanatory
models while making predictions jointly. Al-Shedivat et al.
(2017) propose contextual explanation networks (CEN),
which use neural models on raw input data (C) to gener-
ate parameters for simpler probabilistic models that use in-
terpretable features (X). The simpler model is then used
to generate the final prediction, with its parameters serv-
ing as an explanation for the prediction. However, they
assume that the interpretable features (X) are available for
the task. Melis & Jaakkola (2018) do away with this as-
sumption with SENN. They learn a set of interpretable ba-
sis concepts h(.) which are analogous to high-level feature
combinations from raw input data. To interpret these ba-
sis concepts, they extract a sample from their data which
maximizes concept value and use it as a prototype for the
concept. Lei et al. (2016) also build a model which learns
to produce explanations and predictions jointly, however
they focus on “extractive” explanations, i.e., using subsets
of input sequence as explanations instead of weights from
an interpretable classifier.

The second class of techniques in network interpretabil-
ity focus on generating a posteriori explanations for pre-
viously trained models. Such techniques usually focus
on generating explanations for model predictions on spe-
cific instances. Ribeiro et al. (2016) propose LIME (Lo-
cal Interpretable Model-Agnostic Explanations), a frame-
work which learns simple classifiers that are “locally faith-
ful” to the model being explained, around the instance in
consideration. These classifiers use an interpretable repre-
sentation, which ensures that their parameters serve as an
instance-specific explanation of the original model’s pre-
diction. Alvarez-Melis & Jaakkola (2017) generate similar
post-hoc causal “explanations” for sequence-to-sequence
model outputs. Following Lei et al. (2016), their explana-
tions for any particular input-output pair consist of a map-
ping from each output token to a set of causally related in-
put tokens.

Our proposed approach falls into the second class of mod-
els, where units of explanations for network sub-modules
are uncovered via a post-hoc analysis. However, to inter-
pret groups of nodes in our learned network, we will follow
Melis & Jaakkola (2018) and generate prototypical subsets
from our training data which have high activations for a
neuron and use them to infer the feature captured by it.

Structure learning Multiple algorithms have been pro-
posed to learn correlation structure between variables.
Since covariation selection methods (Dempster, 1972) tend
to break down when the covariance matrix is not invert-
ible, we prefer L1-regularization based methods such as

the Meinshausen-Bühlmann algorithm (Meinshausen et al.,
2006). (Raghu et al., 2017) propose SVCCA, a method
that combines singular value decomposition and cannoni-
cal correlation analysis. SVCCA learns a representative set
of directions, rather than combinations of individual neu-
rons i.e variables. This technique makes it difficult to con-
struct prototypes as suggested in this proposal for concept
discovery. Nevertheless, it appears to be an effective tech-
nique for understanding network dynamics in a variety of
applications (Saphra & Lopez, 2018).

3. Proposed Method
Our method consists of a three-stage pipeline: (1) network
learning (2) defining units of interpretability (3) concept
interpretation.

3.1. Network Learning

For network learning, similar to SVCCA, given the hidden
node activations from a particular layer in a neural network,
we want to discover subsets of correlated neurons. In con-
trast to SVCCA which performs SVD on hidden activations
that produces a set of orthogonal dimensions, we propose to
explicitly capture relationships between nodes by learning
a correlation network. Further, motivated by prior obser-
vations that hidden layers in neural networks often capture
redundant information (Raghu et al., 2017), we seek to en-
force sparsity during network learning.

Given activations for n input samples from a network layer
consisting of N nodes, we perform the following steps,
largely following Meinshausen et al. (2006):

• For each node i ∈ N , we train a linear regression
model Mi to predict i, given the values of all other
nodes. We impose L1 regularization during regression
to induce sparsity. Mi(j) now gives an estimate of
the importance of node j in predicting i. For each
regression model, the L1 regularization coefficient is
calculated according to the following equation:

λ(α) =
2σ̂i√
n
φ̃−1

(α

2N2

)
(1)

In the above equation, φ̃ = 1 − φ, where φ is the cu-
mulative density function ofN (0, 1) and σ̂2

i = n−1 <
Xi, Xi > is the empirical covariance, where Xi de-
notes the activation values for node i and < a, b >
stands for the dot product of two vectors. Choosing a
regularization coefficient following the above proce-
dure ensures that the probability of introducing false
edges (i.e. learning non-zero weights between node-
pairs that are not correlated) is bound by α. We can
tune this bound based on our requirements. In our ex-
periments we use α = 0.05.

• Given N regression models, one for each node, we

Network Learning for Neural Model Interpretability

introduce edges between all node pairs with non-zero
weights. Since our network is undirected, for each
pair (i, j), we choose max(|Mi(j)|, |Mj(i)|) as the
edge weight.

• The resulting graph serves as our correlation network,
which is subsequently used to define the units of inter-
pretation for the next step.

3.2. Defining Units of Interpretability

The main goal of network learning is to use it to interpret
the underlying neural network. Our main idea is that some
neurons might be correlated, and the correlation structure
between neurons can shed some insights on how to inter-
pret the neural network. 1

We considered a few ways to define units of interpretabil-
ity from the learned network structure, but eventually set-
tled in using communities, as detected by community de-
tection algorithms, as our units of interpretability.2 In our
experiments, we use the Louvain Community Detection al-
gorithm (Blondel et al., 2008), an iterative method that op-
timizes modularity in a greedy way. This method is fast
compared to most other community detection algorithms,
while maintaining a very good modularity score. We refer
the details of the algorithm to the original paper.

After running the community detection algorithm, we get a
partitioning of the graph into a set of communities. These
communities, which are essentially a collection of nodes,
is what we consider as units of interpretability.

3.3. Concept Interpretation

Finally, given a set of units of interpretability, we want
to assign human-interpretable meaning to these units. To
this end, we follow the approach used by SENN (Melis
& Jaakkola, 2018), where they extract examples from the
data that “maximally activate” the concepts. They pro-
posed three alternatives of selecting these prototypes. We
adapted their first two alternatives to arrive at the follow-
ing criteria for selecting prototypes: for each unit of in-
terpretability (henceforth unit), we take the top-k examples
having maximum difference between mean activation score
across all neurons in that unit and mean activation score
across all other neurons not in this unit. More formally, the
score for each example X for the unit C is defined to be:
meanc∈C [h(c)]−meanc6∈C [h(c)], and then we take top-k
examples with the highest scores.

1We can see this negatively as the nodes capturing redundant
information, or positively as the nodes jointly working together to
encode richer concepts.

2We considered using connected components as units of inter-
pretability. However, this definition of units of interpretability is
too strict, as it often leads into a very small number of units, often
1, since the graph learned are often a connected graph.

Algorithm 1 Pseudo-code to generate the synthetic data.
1: p ∼ Uniform([0, 1]2, p) . Sample p points

from the unit square
2: for each pair of points (pi, pj) do
3: prob← φ

(
distance(pi,pj)√

p

)
4: if Bernoulli(prob) then
5: Put (pi, pj) to the edge set E
6: end if
7: end for
8: while There are nodes with more than 4 neighbors do
9: Randomly remove such edges

10: end while
11: for each pair of points (pi, pj) do

12: Σ−1ij ←

0.245 if (pi, pj) ∈ E
1 if i = j

0 otherwise
13: end for
14: Scale Σ such that Σii = 1
15: L← Cholesky(Σ) . L is a p× p matrix
16: samples ∼ N (0, 1) . Sample n points from N
17: samples← L× samples . Realize the correlation

3.4. Research Questions

Overall, from this work we aim to gain deeper insight into
model interpretability using network learning techniques.
To do so, in our experiments we follow a two-pronged anal-
ysis of our networks along the following two dimensions:
consistency and interpretability.

Consistency How consistent is the network learned from
activations of the same layer across multiple random initial-
izations and train/test data? If the resulting network stuc-
ture and interpretability are consistent, then we can estab-
lish that learned network structures indeed correspond to
some high-level representations important to the task.

Human Interpretability How interpretable is the neural
network that results from extracting prototypical examples?
If there are concepts that can be associated with each unit
of interpretability, then we can establish that the units of
interpretability are indeed meaningful, and that they lead
to better interpretability by humans.

4. Synthetic Data: Gaussian RV
To start, we first reproduce the results from (Meinshausen
et al., 2006) with the same synthetic dataset that they use,
and perform more in-depth analysis of the impact of num-
ber of datapoints on the quality of the recovered graph.

4.1. Synthetic Data Creation
Graph Creation The graph structure between nodes was
created by first sampling p points in the unit square. Then

Network Learning for Neural Model Interpretability

Number of samples n

Re
ca

ll
(%

)

0

0.25

0.5

0.75

1

250 500 750 1000 1250 1500

Figure 1. The number of correct edges recovered as a function of
number of data points n.

for any two points, we assign an edge with a probability
φ(d√

p), where φ is the PDF of the normal distribution, and
d is the Euclidean distance between the two variables. To
simulate sparsity, edges were randomly removed until the
maximum degree of any point is 4.

Generating Samples Then, each point is interpreted as
a Gaussian random variable, with inverse cross-correlation
of 0.245 between connected points (i.e., Σ−1ij = 0.245 for
i 6= j), and zero otherwise. To ensure constant variance, all
variables are finally rescaled so that the diagonal elements
of Σ are all ones. We then transform this covariance ma-
trix using Cholesky transformation to draw n independent
samples drawn from the corresponding Gaussian distribu-
tion. The complete pseudo-code is shown in Algorithm 1.

4.2. Experiments

We run the method proposed by Meinshausen et al.
(2006) on this dataset, with p = 1000 and n =
{100, 200, . . . , 1600}. Similar to the results of Mein-
shausen et al. (2006), we obtain a very high precision
(100% in almost all cases). We also find that the recall
increases with the number of data points n. We plot this in
Figure 1.

This result is encouraging in two ways: (1) It confirms the
results of Meinshausen et al. (2006), and (2) It gives us
insight that providing more samples results in a graph that
is closer to the true graph, under the Markov Random Field
assumption. In the next section, we also experiment with
various sample sizes to see how it affects the number of
edges, and also how the units of interpretability behave.

5. Real Data: Stanford Sentiment Task
5.1. Task and Data Description

In order to evaluate the proposed method on a real task, we
train a neural network to perform sentiment classification
on the Stanford Sentiment Dataset (Socher et al., 2013).
This dataset consists of 8544, 1101 and 2210 sentences in
the training, validation and the test datasets with each sen-

tence possessing one of three possible labels: positive, neg-
ative or neutral.

5.2. Experiments

For the Stanford Sentiment Task (SST) described above,
we trained a 1-layer Multi-layer Perceptron (MLP) with 32
hidden nodes. Vocabulary of the dataset was fixed to 25000
words and the input to the MLP comprised of a Bag-of-
Words (BoW) representation for each sentence with term
frequencies instead of boolean entries representing pres-
ence/absence of a word. The output layer contained 3
nodes. This network was trained using Cross-Entropy Loss
through minibatch training with 128 samples per mini-
batch. We observed the network overfitting on the training
data quite quickly into the training, achieving 95% (and in-
creasing) accuracy on the training dataset and saturating at
60 − 65% accuracy on the validation dataset, so we chose
to perform early stopping using only the first 5 epochs for
analysis.

After training the neural network, we obtained activations
of the hidden nodes on the training dataset and used them
to learn an undirected network on the 32 nodes (now “ob-
served”) to analyze the dependency structure of the hid-
den layer. We analyze the evolution of these networks dur-
ing the training phase, along with variations in the learned
structure depending upon various parameters next.

5.3. Analyzing Learned Networks

We observed that the accuracy on the training dataset in-
creased to almost 60% by the end of the first epoch, so,
in order to assess the evolution of the learnt network at a
greater granularity, we learnt the network structure at ev-
ery one-tenth of the epoch. Figure 2 shows the evolution
of the network for the first epoch. Further, we also ana-
lyzed the effect of different forms of initialization (Gaus-
sian/Uniform) and different datasets (SST/IMDB) for the
same task (sentiment classification) on the structure of the
learnt network. The IMDB dataset comprised of 25,000
train and test sentences. We divided the train set into
17,500 sentences for training and the remaining 7,500 for
validation. It differs from the SST dataset in that it only
has two sentiment classes: positive and negative. The sim-
ple BoW MLP architecture described above achieves a very
high accuracy on this dataset (88.34% on validation set). It
is evident from Figure 2 that as the training progresses, the
modularity of the graph increases and dense communities
get formed. Further, uniform initialization (Figure 2 (b) and
(d)) results in sparser networks as compared to Gaussian
initialization. It should be noted that (Morcos et al., 2018)
found that larger neural networks result in more consistent
canonical representations, and since we only used 32 nodes
in our network, it is possible that learned networks would

Network Learning for Neural Model Interpretability

(a) SST, Gaussian Initialization

(b) SST, Uniform Initialization

(c) IMDB, Gaussian Initialization

(d) IMDB, Uniform Initialization

Figure 2. Network evolution during first epoch of training.

be even more consistent for greater number of nodes.

It is also interesting to see that the network learned in
IMDB with uniform initialization shows very high mod-
ularity. Due to time constraint we do not investigate the
results here further. But it is an interesting direction for
future work.

5.4. Interpretability Results

As the main goal of our work is getting units of inter-
pretability, we compare our method to a baseline method
using SVD. With SVD, we can extract the top-k directions
and treat them as units of interpretability. Then for both our
method and the baseline, we extract prototypical examples
as described in Section 3.

Label Distribution As described previously, for each de-
tected community we extract top-100 prototypical exam-
ple sentences from the training data. As a preliminary ex-
periment, we compare the label distribution of these 100
examples to the label distribution in the full training data.
The idea is that if the communities detected are meaningful,
each of them should have a different distribution of labels,
since otherwise the feature represented by the community
is not distinguishing. We plot the label distributions for our
method and SVD in Figure 4 and 5.

Comparing the distribution of labels across communities in
our method, we see that the proportion of neutral class re-
mains constant across all communities. However, we see
one community (Community2) having more negative ex-

amples, and another community having more positive ex-
amples. Community1 seems to be more sensitive to pos-
itive examples compared to Community0.

In contrast, in the label distribution for SVD, we see vary-
ing distribution of labels. However, in all SVD directions,
the positive class, which is also the majority class in the
training data, is always the majority class. So it is not very
clear what each SVD direction actually represents.

The difference between our method and the baseline will
be more pronounced when we compare the top words.

Word Salience When looking at the top words that max-
imally activate each community, as shown in Table 1 and 2,
we see that our method gives more polarized word exam-
ples. Community2 seems to have mostly negative words,
Community1 mostly positive words, and Community0
a mix of some positive words and some neutral words.
Comparing this result to the label distribution discussed
previously, we see a strong alignment that the commu-
nity with the highest negative class (Community2) has
many more negative words, and the community with the
most positive labels (Community 1) is associated with
the positive words.

In contrast, the top words in SVD do not really have inter-
pretable connection with the label distribution, apart from
the set of positive words associated with SVD2, which
shows a greater number of positive examples compared to
other SVD directions. For example, SVD0 and SVD1 do
not seem to be show a coherent set of words, unlike the

Network Learning for Neural Model Interpretability

0 5 10 15 20 25 30

0

5

10

15

20

25

30

32
 sa

m
pl

es

Epoch 0

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 1

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 2

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 3

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 4

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 5

0 5 10 15 20 25 30

0

5

10

15

20

25

3051
2

sa
m

pl
es

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

3081
92

 sa
m

pl
es

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

32
 sa

m
pl

es

Seed 0

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Seed 1

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Seed 2

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Seed 3

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Seed 4

0 5 10 15 20 25 30

0

5

10

15

20

25

3051
2

sa
m

pl
es

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

3081
92

 sa
m

pl
es

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 3. (left) These adjacency matrices shows the evolution of communities (shown in blue squares) across epochs for various sample
sizes for the Stanford Sentiment Task. Epoch 0 is the untrained network. Notice how the community structure (shown by more edges
outside the communities) is more random at the beginning, compared to after training. This shows that both the network learning and
the community detection is meaningfully related to how trained the neural network is. (right) The resulting units of interpretation at the
final epoch across different seeds and sample sizes for the Stanford Sentiment Task.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Community0 Community1 Community2

negative neutral positive

Figure 4. Label distribution in the top-100 prototypical examples
for the 3 units discovered using our method.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

SVD0 SVD1 SVD2

negative neutral positive

Figure 5. Label distribution in the top-100 prototypical examples
for the top-3 SVD directions.

words discovered in our method.

6. Real Data: Natural Language Inference
6.1. Task and Data Description

The second task which we evaluate our proposed method
on is NLI. Natural Language Inference (NLI), also known
as Recognizing Textual Entailment (RTE), is a benchmark

Community0 Community1 Community2
surprise perfectly failure

provocative thoughtful Unfortunately
aftertaste powerful bore

Offers brilliant thinks
smarter inventive nowhere

Table 1. Top-5 maximally activating words for the three commu-
nities discovered by our method in the Stanford Sentiment Task.

SVD0 SVD1 SVD2
toughest minimum solid
techies vs enjoyable

redefinition shocked powerful
inform Who brilliant

subjected Or hilarious
Table 2. Top-5 maximally activating words for the three SVD di-
rections discovered in the Stanford Sentiment Task.

task in natural language understanding (Cooper et al., 1996;
Condoravdi et al., 2003; Bos & Markert, 2005; Dagan et al.,
2006). In this task, a model must determine whether a nat-
ural language hypothesis can be justifiably inferred from a
given premise. Often, this is posed as a three-way deci-
sion where the hypothesis can be inferred to be true (en-
tailment), false (contradiction) or its truth value cannot be
determined (neutral).

Due to its importance, significant prior work (Dagan et al.,
2006; 2009; 2013; Marelli et al., 2014) has focused on
developing datasets and models for this benchmark task.
Most recently, this task has been concretely implemented
in two large-scale datasets: Stanford NLI (SNLI; (Bowman
et al., 2015)), and Multi-genre NLI (MultiNLI; (Williams
et al., 2017)). Both these datasets were collected via a
crowdsourcing task wherein workers were given a premise
sentence and asked to generate novel hypothesis sen-

Network Learning for Neural Model Interpretability

tences representing the three categories of entailment re-
lations. A key difference between these datasets is that
for SNLI, premise sentences were selected from captions
in the Flickr30k corpus (Young et al., 2014), while for
MultiNLI, premise sentences were selected from ten dis-
tinct genres of written and spoken English. These datasets
spurred the rapid development of neural models which per-
formed extremely well on the entailment task. However,
recent work has uncovered the presence of “annotation ar-
tifacts” (i.e. shallow heuristic patterns used by crowdwork-
ers while generating hypotheses) in these datasets (Guru-
rangan et al., 2018; Poliak et al., 2018). Several studies
have shown that neural models exploit the presence of such
biases instead of capturing linguistic information needed
for the task (Naik et al., 2018; Glockner et al., 2018). In-
spired by these observations, we “rediscover” biases in NLI
datasets, by showing that these biases emerge as human-
interpretable concepts on using our interpretability pipeline
to analyze neural models. For all experiments in this report,
we use SNLI, which has training, development and test set
sizes of 549367, 9842 and 9824 respectively.

6.2. Neural Model

To “rediscover” some of the dataset biases reported by prior
work, we build a hypothesis-only classifier. This model
only uses the hypothesis sentence to predict the entailment
label, completely ignoring the premise sentence. It con-
sists of three layers: Embedding layer, Hidden layer, Out-
put layer. For the embedding layer, we use fastText (Joulin
et al., 2016) to construct 100-dimensional sentence embed-
dings (we use the default setting which computes bag of
words+bigrams). The hidden layer consists of 32 nodes
with ReLU activation while the output layer is a 3-class
softmax layer (analogous to model settings used in our sen-
timent classification experiments). We experimented with
larger hidden layers but observed no additional improve-
ments in classification accuracy. The classification accu-
racy of this model on SNLI development and test sets hov-
ers around 65.2% and 64.4% respectively, depending on
the seed used. This matches results reported by Guru-
rangan et al. (2018). Since a classifier which ignores the
premise completely is able to perform much better than a
majority-class baseline (33%; SNLI is balanced), this in-
dicates that hypotheses generated by crowdworkers con-
tain shallow patterns which make NLI artificially easier for
models. We run our network learning approach to uncover
some of these patterns from hypothesis sentences.

6.3. Analyzing Learned Networks

Our observations from analyzing networks learned for NLI
match our insights from the sentiment classification exper-
iments. To save space, adjacency matrix visualizations are
included in the appendix.

0

0.25

0.5

0.75

1

Community0 Community1 Community2 Community3 Community4 Community5

Contradiction Neutral Entailment

Class distribution of top-100 prototypical examples for each
community

Figure 6. Class distribution of top-100 prototypical examples for
each community created by our method

Label Distribution After running our network learning
technique, we discover six communities among the hidden
nodes of the hypothesis-only classifier. We then extract the
top-100 prototypical examples for each community. The la-
bel distributions of prototypical examples for each commu-
nity are shown in figure 6. From the graph, we can see that
in each community, there is a clear majority label. Commu-
nities 0,1 and 2 in particular seem to be highly dominated
by a single label (94-95% of examples have the same label).
Henceforth, all further analyses of prototypical examples
focus on these three label-dominated communities.

6.4. Interpretability Results

Prototypical Words Gururangan et al. (2018) noticed that
hypotheses generated by crowdworkers contained lexical
biases i.e. certain words were highly correlated with par-
ticular labels. For example, they observed that negation
words (eg: no, nothing, never etc.) were present in a large
number of contradictory hypotheses and hence were very
predictive of the contradiction label. To study whether our
communities can help us uncover such word-label corre-
lations, we extract prototypical words for the three label-
dominated communities. To extract prototypical words, we
simply treat each word in the vocabulary as a hypothesis
sentence and extract the top-100 words which maximally
activate each community. The top 5 prototypical words for
each community are shown in table 3. We can see that 4
out of 5 top words for community 2 (dominated by con-
tradiction) are indeed negation words, corroborating obser-
vations made by previous work. This indicates that our
technique can be used to identify word-label correlations
to some extent. However, the top 5 words for communities
0 and 1 (neutral;entailment) seem less interpretable.

Prototypical Example Construction Strategies In
addition to detecting lexical biases, Gururangan et al.
(2018) also identified some common heuristics used by

Network Learning for Neural Model Interpretability

Community1 Community0 Community2
least proximity nobody
age picture Nobody

picture seems No
motion age nothing

proximity except Mars

Table 3. Top-5 maximally activating words for the most label-
dominated communities. Note that communities 1, 0 and 2 are
dominated by entailment, neutral and contradiction labels respec-
tively.

crowdworkers to generate hypotheses efficiently. We
study whether such strategies can be detected by our
method by looking at prototypical examples for the three
label-dominated communities. Table 4 presents the distri-
bution of construction strategies exhibited by prototypical
examples. Note that an example may exhibit multiple
or none of these strategies. The construction strategies
detected are briefly explained below:

• Entailment Strategies: We observe that prototypical
examples for entailment exhibit high usage of generic
words (eg: animal, person) and non-gender words
(eg:human), which were probably chosen to general-
ize over specific premise words (eg: dog, girl). They
also demonstrate moderate usage of approximation
words (eg:some,at least) used to replace exact num-
bers from the premise. 15% of the examples don not
exhibit any of these strategies

• Neutral Strategies: Prototypical examples for the
neutral category show moderate usage of modifiers
(eg:tall,sad), superlatives (eg: first, favorite) and dis-
course markers (eg: because). Modifiers and superla-
tives can be used as a simple strategy to generate hy-
potheses that are not obviously entailed but still plau-
sible. For example, for a premise sentence “A girl is
playing”, a neutral hypothesis can easily be generated
as “A tall girl is playing”. Discourse markers can be
used to attach extra information to generate a neutral
hypothesis. Finally, we also observe high usage of
present participle verbs, which may be used to gener-
ate neutral hypotheses when the premise involves pe-
riodic actions. For example, for a premise “she plays
everyday”, a neutral hypothesis can be “she is play-
ing”. 36% examples exhibit none of these strategies

• Contradiction Strategies: Analogous to our observa-
tions from word-label experiments, we see that using
negation words is the most dominant strategy among
prototypical examples. We also observe moderate us-
age of lack-of-action words (eg: sleeping) to generate
contradictory hypotheses when the premise involves

Unit Top Features
Generic Words (32%)

Community1 Non-Gender Words (60%)
Approximation Words (19%)
Modifiers (14%)

Community0 Superlatives (7%)
Discourse Markers (5%)
Present Participle (49%)
Negation Words (48%)

Community2 Lack of Action (10%)
Cats (13%)

Table 4. Strategies exhibited by top-100 prototypical examples for
the most label-dominated communities. Note that communities 1,
0 and 2 are dominated by entailment, neutral and contradiction
labels respectively.

an action. An interesting high-scoring feature in this
class is the usage of “cats”. This was also noticed
by Gururangan et al. (2018), who speculated that it
might be due to high presence of “dogs” in the premise
sentences which were extracted from image captions.
33% examples exhibit none of these strategies

Our observations match prior work, indicating that identi-
fying groups of correlated neurons and interpreting them
via prototypical examples can be used to uncover dataset
biases, in addition to interpreting trained models. This sug-
gests another interesting application of our interpretability
pipeline: using it for adversarial filtering in a data collec-
tion process. Current work using adversarial filtering dur-
ing data collection (Zellers et al., 2018; Dua et al., 2019)
usually runs a state-of-the-art model and discards crowd-
sourced examples which can be solved by it, ensuring that
only “hard” examples get included. However, having an in-
termediate module that identifies strategies which make ex-
amples easy for SOTA models can make filtering more ef-
ficient by prompting users to not use these strategies which
result in their examples getting rejected.

7. Conclusion
In this project, we proposed an approach to learn sparse
networks (Gaussian graphical model) over hidden nodes
in a neural network, with the goal of decomposable in-
terpretability and potential network compression. We then
performed experiments using one synthetic dataset and two
real NLP datasets. The results show some evidence that
units of interpretability as found by our proposed method
are quite meaningful, as they show different behavior with
respect to the label distribution of the examples that max-
imally activate them. However, there is still little consis-
tency of learned units across different initialization, which
may be explained by the fact that each initialization leads
to different local optima.

Network Learning for Neural Model Interpretability

References
Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., and Martineau,

P. An exact graph edit distance algorithm for solving pat-
tern recognition problems. In 4th International Confer-
ence on Pattern Recognition Applications and Methods
2015, 2015.

Al-Shedivat, M., Dubey, A., and Xing, E. P. Contextual
explanation networks. arXiv preprint arXiv:1705.10301,
2017.

Alvarez-Melis, D. and Jaakkola, T. A causal framework
for explaining the predictions of black-box sequence-to-
sequence models. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 412–421, Copenhagen, Denmark, Septem-
ber 2017. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/
D17-1042.

Blondel, V. D., Guillaume, J.-l., Lambiotte, R., and Lefeb-
vre, E. Fast unfolding of communities in large networks.
In arXiv, pp. 1–12, 2008. URL https://arxiv.
org/pdf/0803.0476.pdf.

Bos, J. and Markert, K. Recognising textual entailment
with logical inference. In Proceedings of the conference
on Human Language Technology and Empirical Meth-
ods in Natural Language Processing, pp. 628–635. As-
sociation for Computational Linguistics, 2005.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.
A large annotated corpus for learning natural language
inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pp. 632–642, Lisbon, Portugal, September 2015. As-
sociation for Computational Linguistics. URL http:
//aclweb.org/anthology/D15-1075.

Condoravdi, C., Crouch, D., De Paiva, V., Stolle, R., and
Bobrow, D. G. Entailment, intensionality and text un-
derstanding. In Proceedings of the HLT-NAACL 2003
workshop on Text meaning-Volume 9, pp. 38–45. Asso-
ciation for Computational Linguistics, 2003.

Cooper, R., Crouch, D., Van Eijck, J., Fox, C., Van Gen-
abith, J., Jaspars, J., Kamp, H., Milward, D., Pinkal, M.,
Poesio, M., et al. Using the framework. Technical report,
1996.

Dagan, I., Glickman, O., and Magnini, B. The pascal
recognising textual entailment challenge. In Machine
learning challenges. evaluating predictive uncertainty,
visual object classification, and recognising tectual en-
tailment, pp. 177–190. Springer, 2006.

Dagan, I., Dolan, B., Magnini, B., and Roth, D. Recog-
nizing textual entailment: Rational, evaluation and ap-
proaches. Natural Language Engineering, 15(4):i–xvii,
2009.

Dagan, I., Roth, D., Sammons, M., and Zanzotto, F. M.
Recognizing textual entailment: Models and applica-
tions. Synthesis Lectures on Human Language Technolo-
gies, 6(4):1–220, 2013.

Dempster, A. P. Covariance selection. Biometrics, pp. 157–
175, 1972.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S.,
and Gardner, M. Drop: A reading comprehension
benchmark requiring discrete reasoning over paragraphs.
arXiv preprint arXiv:1903.00161, 2019.

Glockner, M., Shwartz, V., and Goldberg, Y. Break-
ing NLI systems with sentences that require simple
lexical inferences. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pp. 650–655, Mel-
bourne, Australia, July 2018. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/P18-2103.

Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R.,
Bowman, S., and Smith, N. A. Annotation artifacts
in natural language inference data. In Proceedings of
the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Papers),
pp. 107–112, New Orleans, Louisiana, June 2018. As-
sociation for Computational Linguistics. doi: 10.18653/
v1/N18-2017. URL https://www.aclweb.org/
anthology/N18-2017.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. Bag
of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759, 2016.

Karpathy, A., Johnson, J., and Fei-Fei, L. Visualizing
and understanding recurrent networks. arXiv preprint
arXiv:1506.02078, 2015.

Lei, T., Barzilay, R., and Jaakkola, T. Rationalizing neural
predictions. arXiv preprint arXiv:1606.04155, 2016.

Lipton, Z. C. The Mythos of Model Interpretability. Tech-
nical report, 2017. URL https://arxiv.org/
pdf/1606.03490.pdf.

Marelli, M., Bentivogli, L., Baroni, M., Bernardi, R.,
Menini, S., and Zamparelli, R. Semeval-2014 task
1: Evaluation of compositional distributional seman-
tic models on full sentences through semantic related-
ness and textual entailment. In Proceedings of the 8th

https://www.aclweb.org/anthology/D17-1042
https://www.aclweb.org/anthology/D17-1042
https://arxiv.org/pdf/0803.0476.pdf
https://arxiv.org/pdf/0803.0476.pdf
http://aclweb.org/anthology/D15-1075
http://aclweb.org/anthology/D15-1075
https://www.aclweb.org/anthology/P18-2103
https://www.aclweb.org/anthology/P18-2103
https://www.aclweb.org/anthology/N18-2017
https://www.aclweb.org/anthology/N18-2017
https://arxiv.org/pdf/1606.03490.pdf
https://arxiv.org/pdf/1606.03490.pdf

Network Learning for Neural Model Interpretability

International Workshop on Semantic Evaluation (Se-
mEval 2014), pp. 1–8, Dublin, Ireland, August 2014.
Association for Computational Linguistics and Dublin
City University. URL http://www.aclweb.org/
anthology/S14-2001.

Meinshausen, N., Bühlmann, P., et al. High-dimensional
graphs and variable selection with the lasso. The annals
of statistics, 34(3):1436–1462, 2006.

Melis, D. A. and Jaakkola, T. Towards robust interpretabil-
ity with self-explaining neural networks. In Advances in
Neural Information Processing Systems, pp. 7786–7795,
2018.

Morcos, A. S., Raghu, M., and Bengio, S. Insights on rep-
resentational similarity in neural networks with canon-
ical correlation. In NeurIPS, 2018. URL http://
arxiv.org/abs/1806.05759.

Naik, A., Ravichander, A., Sadeh, N., Rose, C., and Neu-
big, G. Stress test evaluation for natural language in-
ference. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pp. 2340–2353,
Santa Fe, New Mexico, USA, August 2018. Association
for Computational Linguistics. URL https://www.
aclweb.org/anthology/C18-1198.

Poliak, A., Naradowsky, J., Haldar, A., Rudinger, R., and
Van Durme, B. Hypothesis only baselines in natural lan-
guage inference. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics,
pp. 180–191, New Orleans, Louisiana, June 2018. As-
sociation for Computational Linguistics. doi: 10.18653/
v1/S18-2023. URL https://www.aclweb.org/
anthology/S18-2023.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.
SVCCA: Singular Vector Canonical Correlation Analy-
sis for Deep Learning Dynamics and Interpretability.
(Nips):1–17, 2017. ISSN 10495258. doi: 1706.05806.
URL http://arxiv.org/abs/1706.05806.

Ribeiro, M. T., Singh, S., and Guestrin, C. Why should i
trust you?: Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
1135–1144. ACM, 2016.

Saphra, N. and Lopez, A. Understanding Learning Dy-
namics Of Language Models with SVCCA. 2018. URL
http://arxiv.org/abs/1811.00225.

Shi, X., Knight, K., and Yuret, D. Why neural transla-
tions are the right length. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pp. 2278–2282, 2016.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep mod-
els for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on empir-
ical methods in natural language processing, pp. 1631–
1642, 2013.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426,
2017.

Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. From
image descriptions to visual denotations: New similarity
metrics for semantic inference over event descriptions.
Transactions of the Association for Computational Lin-
guistics, 2:67–78, December 2014. doi: {10.1162/tacl\
a\ 00166}. URL https://www.aclweb.org/
anthology/Q14-1006.

Yu, S., Krishnapuram, B., Rosales, R., Rao, R. B.,
and Com, B. R. Bayesian Co-Training. Journal
of Machine Learning Research, 12:2649–2680, 2011.
URL http://jmlr.csail.mit.edu/papers/
volume12/yu11a/yu11a.pdf.

Zellers, R., Bisk, Y., Schwartz, R., and Choi, Y. SWAG:
A large-scale adversarial dataset for grounded common-
sense inference. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 93–104, Brussels, Belgium, 2018. Asso-
ciation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/D18-1009.

A. Adjacency Matrices for NLI
Figure 7 shows the evolution of the learned network struc-
ture across epochs, as well as the network structure at
the final epoch for different initializations. As training
progresses, graphs become more modular (epoch 0 shows
more randomness than epochs 1 and 2). The network con-
verges fairly quickly, not showing much increase in mod-
ularity after the first epoch. Finally, we again observe that
using different seeds results in different network structures.

B. Prototypical Examples for NLI

C. Toy Task: Premier League
Our idea of learning the network structure between the neu-
rons in a neural model can be applied to virtually any neural
model. For the purpose of this project, we start with a toy
task: predicting the probability of a premier league team
getting certain number of goals given the opposing team.

http://www.aclweb.org/anthology/S14-2001
http://www.aclweb.org/anthology/S14-2001
http://arxiv.org/abs/1806.05759
http://arxiv.org/abs/1806.05759
https://www.aclweb.org/anthology/C18-1198
https://www.aclweb.org/anthology/C18-1198
https://www.aclweb.org/anthology/S18-2023
https://www.aclweb.org/anthology/S18-2023
http://arxiv.org/abs/1706.05806
http://arxiv.org/abs/1811.00225
https://www.aclweb.org/anthology/Q14-1006
https://www.aclweb.org/anthology/Q14-1006
http://jmlr.csail.mit.edu/papers/volume12/yu11a/yu11a.pdf
http://jmlr.csail.mit.edu/papers/volume12/yu11a/yu11a.pdf
https://www.aclweb.org/anthology/D18-1009
https://www.aclweb.org/anthology/D18-1009

Network Learning for Neural Model Interpretability

0 5 10 15 20 25 30

0

5

10

15

20

25

30

32
 sa

m
pl

es
Epoch 0

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 1

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 2

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 3

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 4

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Epoch 5

0 5 10 15 20 25 30

0

5

10

15

20

25

3051
2

sa
m

pl
es

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

3081
92

 sa
m

pl
es

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

32
 sa

m
pl

es

Seed 0

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Seed 1

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Seed 2

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Seed 3

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Seed 4

0 5 10 15 20 25 30

0

5

10

15

20

25

3051
2

sa
m

pl
es

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

3081
92

 sa
m

pl
es

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 7. (left) Adjacency matrices for the Natural Language Inference task across epoch, with communities marked with blue squares.
(right) The visualization at final epoch across different initialization.

Unit Top Examples
Humans are interacting

Community1 Humans holding something
Humans outside
Three men are joyously smiling

Community0 Tall humans waiting
Tall humans enjoying
Nobody is holding anything

Community2 Two cats sleeping
Nobody is sitting

Table 5. Top 3 prototypical examples for the most label-
dominated communities. Note that communities 1, 0 and 2 are
dominated by entailment, neutral and contradiction labels respec-
tively.

After testing our idea on this toy task to show its feasibil-
ity, we then show the application of our idea on an existing
NLP task: Natural Language Inference (NLI).

For the toy task on premier league score probability pre-
diction, we start by modeling the problem as a Bayesian
graphical model. We assume that each team has a spe-
cific attack and defense strength as numeric value, and the
difference between the attack of current team and the de-
fense of the opposing team determines the distribution of
the number of goals made by this team. To break the sym-
metry between the two teams, we also model the concept of
having home advantage on one of the teams, which affect
the distribution of one of the teams. A graphical summary
of the model is shown in Figure 8.

In our experiments, we synthetically generate samples from

Figure 8. The dependency network between variables modeled in
the toy task.
this network using the following distributions, where h(g)
and a(g) represent the home team and the away team in the
match g, respectively:

µatt ∼ N (0, σ1) µdef ∼ N (0, σ1)
σatt = 1 σdef = 1

attt ∼ N (µatt, σ
2
att) deft ∼ N (µdef , σ

2
def)

log θg0 = home+ atth(g) − defa(g)
log θg1 = atta(g) − defh(g)

home ∼ N (0, σ0) ygj ∼ Poisson(θgj), j = 0, 1

Here ygj represents the number of goals sampled for the
team h(g) when j = 0 and the team a(g) when j = 1.

We consider T participating teams, and we first sample the
attacks and defenses of each team. Then, using this pa-
rameters, we sampleM leagues, where each league consist
of a team playing with all other teams twice, once as the
home team, and once as the away team (so in total we have
MT (T − 1) matches.

Network Learning for Neural Model Interpretability

For our final report, we also wish to explore NLI, whose
details have been described in the appendix.

D. Preliminary Experiments
For the purpose of this report, we have focused only on the
toy task. Extending our experiments to real-world NLI data
will be one of our goals for the final report.

D.1. Model and Data

We train an MLP with a single hidden layer with differ-
ent number of hidden nodes (Nh ∈ {4, 8, 16, 32, 64}) with
ReLU activation. The input to our MLP is comprised of
the IDs of the teams in the game (one-hot vector of size
NT , the number of teams) and the goals scored by each of
the teams. The output is two-dimensional: probability as-
signed to the goals scored by the each of the teams. We
apply a sigmoid activation to the output layer to learn these
probabilities. The network is trained for 100 epochs to op-
timize mean squared error loss using minibatch stochastic
gradient descent (batch size = 100) with Adam optimizer.
Further, we experiment with two different data sizes for
4 teams: (NT = 4): number of matches between each
team pair, NM ∈ {20, 100}, resulting a total dataset size
of D ∈ {240, 1200}. Note that D = NM · 2NTC2. We
used 80% of the generated dataset for training and the re-
maining 20% for testing purposes.

D.2. Basic Analysis

We evaluated the learning of the trained model by calculat-
ing the goodness-of-fit using the coefficient of determina-
tion,R2, averaged over 5 different seed values for the train-
ing dataset. We show training R2 values here because they
were highly correlated with the test R2 values. It is evident
from Figure 9 that the learnt model runs very well, result-
ing in almost perfect predictions R2 ≈ 1 for higher num-
ber of hidden nodes. Also, model performance predictably
improves (both in terms of mean and standard deviation)
as the network capacity improves. Larger training data ex-
pectedly improves performance for every number of hidden
nodes. Next, we learn a sparse Gaussian Graphical Model
over the hidden nodes and assess its density by compute a
graph density metric, |E|nC2

, which expresses the number of
edges in the graph as a fraction of the maximum number of
edges possible (those in a complete graph). As Figure 10
shows, graph density reduces, i.e., graph becomes sparser
as the number of hidden nodes increase. Further, the learnt
graph seems to be denser for larger training data.

D.3. Consistency Analysis

These experiments evaluate the consistency of correlation
networks learned by our method, across different random

4 8 16 32 64 128 256
Number of hidden nodes

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n

(R
2)

train_size=192.0
train_size=960.0

Figure 9. R2 on training set for different number of hidden nodes.

4 8 16 32 64 128 256
Number of hidden nodes

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ap

h
de

ns
ity

 (|E
|

n C
2
)

train_size=192.0
train_size=960.0

Figure 10. Graph density for different number of hidden nodes.

initializations and across train and test data. To evaluate
graph inconsistency, we propose the following metric:

GI(G1, G2) =
GED(G1, G2)

max(|EG1|, |EG2|)
(2)

In the above equation, EG1, EG2 refer to the edge-sets for
graphs G1, G2 respectively, while GED(G1, G2) gives
the graph edit distance (Abu-Aisheh et al., 2015) between
the two. We normalize raw graph edit distance in order
to allow comparison across different hidden node sizes.
Since computing graph edit distance is expensive, to im-
prove tractability, we remove min(|SG1|, |SG2|) singleton
nodes from both G1 and G2. Here SG is the set of all sin-
gleton nodes present in graph G.

Before calculating inconsistency scores, we first qualita-
tively analyze learned graphs for 4,8 and 16 hidden nodes
across multiple random initializations. For 4 hidden nodes,
we see some consistency across initialization, but this drops
very quickly as we increase the number of hidden nodes,
dropping to nearly 0 for 16 nodes. Hence, we compute in-
consistency scores for networks 4 and 8 hidden nodes and
see that inconsistency across initialization is high, which is
an issue we need to resolve.

While learned graphs are not consistent across initializa-
tions, we do observe that train and test graphs for each ran-
dom seed show high levels of isomorphism. This behavior
can be observed in figure 11. As the number of hidden
nodes increases, train-test isomorphism decreases, but in-
creasing the amount of training data leads to increase in
isomorphism at higher hidden node settings.

Network Learning for Neural Model Interpretability

Hidden D1 D2
4 0.8 1.0
8 0.6 0.6

16 0.4 0.0
Table 6. Percentage of isomorphic graphs on training data across
multiple random initializations for each hidden node and dataset
setting. D1 and D2 refer to the 240 and 1200 example datasets
respectively

4 × 100 5 × 100 6 × 100 7 × 100 8 × 100

Number of hidden nodes

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ap

h
In

co
ns

ist
en

cy
 (

ED
(G

1,
G

2)
m

ax
(|E

G
1|,

|E
G

2|)
)

train_size=192.0
train_size=960.0

Figure 11. Percentage of isomorphic graphs across different seeds
vs number of hidden nodes

D.4. Human Interpretability Analysis

From our observation of the prototypes extracted by this
method on the graphs at the bottom of Figure 13, it seems
that the activations of the large connected component is
capturing the probability distribution of the number of
goals for matches between team 2 as the attacker and team
3 as the defender.

E. Limitations of Toy Task
There are several directions that we would like to explore
for our final project. One of the shortcomings of our toy
problem is that because the probability density assigned to
the input is Poisson, which involves exponentiation of at-
tack and defense strengths, the model to be learned does
not necessitate a decomposable structure over the hidden
nodes of an MLP. To address this, we would like to sim-
plify the task a little bit (so that the “expected” behaviour
of the neural network is decomposable). Next, we would
like to extend our analysis to problem settings where pre-
vious research has demonstrated decomposability of hid-
den layers (Shi et al., 2016) (Karpathy et al., 2015). We
would like to explore if our proposed approach confirms
these findings. Finally, we would like to apply the pro-
posed approach (suitably altered to ensure it works on the
two simple tasks described above) to test decomposable in-
terpretability for NLI. The old and updated versions of the
plan of activities are described in the appendix.

4 8 16 32 64 128 256
#Hidden Nodes (Log-Scale)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 Is
om

or
ph

ic
Tr

ai
n-

Te
st

 G
ra

ph
s

train_size=192.0
train_size=960.0

Figure 12. Percentage of isomorphic train-test graph pairs vs
number of hidden nodes

0

1

23
4

5

6

7

8

9

10

11

12

13

14

15

0
1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

Figure 13. (top-left) The graph learned from the activations of the
training data. (top-right) The graph learned from the activations
of the test data. (bottom-left and bottom-right) The graphs learned
on training and test data by the network using different initializa-
tion of the MLP.

F. Recovering Network Structure using
MCMC Samples

One of the experiments we tried for sanity check of net-
work learning was to train it on the MCMC samples (after
sufficient burn-in) generated in HW-2 to see if it recovers
the network structure of the Bayesian Network for the pre-
mier league. This, for appropriately tuned level of sparsity
resulted in the learned model as shown in Figure 14.

The orange nodes refer to the teams’ defenses, while the
blue nodes refer to the teams’ attacks. The pink node rep-
resents prior parameter related to defense, and the brown
node represents the prior parameter related to attack.

Network Learning for Neural Model Interpretability

Figure 14. The network learned on MCMC samples.

