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Abstract
A popular emerging approach in deep generative
modeling consists of normalizing flows, models
that learn a sequence of smooth invertible func-
tions from a simple base distribution to a complex
target distribution. One exciting possible appli-
cation of such models is in the nascent field of
Climate Informatics, particularly for medium- to
long-term weather prediction. In this paper we
conduct the first experiments on the feasibility of
reversible deep generative models applied to the
task of density estimation of climate data. We
find that even the simplest normalizing flow mod-
els successfully outperform several baselines and
show serious potential for future applications in
weather prediction and other aspects of Climate
Informatics.

1. Introduction
A popular emerging approach in deep generative modeling
consists of normalizing flows, a technique that involves
learning a sequence of smooth invertible functions that map
a simple product distribution into an arbitrarily complex
target distribution learned from the data. These methods
ensure that the log-likelihood is easy to evaluate, facilitating
training. Simultaneously, by sampling from the known base
distribution and transforming via the inversion of the learned
function, generating samples is made simple as well. These
models are extremely flexible and powerful, and they have
very exciting future potential.

One possible application is in the nascent field of Climate In-
formatics. Historical weather prediction is based on simple
ensembles that jointly utilize statistical regression models
and dynamical models that simulate weather outcomes via
partial differential equations (PDEs). Climate Informatics is
the study of how to improve prediction techniques by incor-
porating the rapidly developing wealth of machine learning
research. While some of these methods lack the explainabil-
ity of simpler models, superior predictive performance is
often worth the trade-off.

Medium- to long-term weather prediction is a notoriously
difficult problem. To begin with, there is a severe shortage

of climate data, as we have access to only one reality and
no method of obtaining counterfactuals. This is partially ad-
dressed via simulations, but these simulators are extremely
sensitive to fluctuations in initial conditions and frequently
are forced to sacrifice accuracy in favor of computability.
This shortage of climate data means many popular mod-
els are a poor choice for this specific problem. In addition
to this, most of the work on these models has been done
with the assumption of stationarity; while this is reasonable
for modeling things like language or natural images, it is
certainly not the case with climate.

In general, work on time series prediction attempts to model
the autoregressive nature of the data. In contrast, deep gen-
erative models and other techniques such as GP regression
typically consider each training and test sample to be an i.i.d.
draw from an unknown distribution or function. As such,
these models are probably not the best suited for regression;
they are, however, much more adept at modeling unknown
and complex distributions.

With deep generative models, we can better learn underlying
representations of the developing Earth climate. This is par-
ticularly useful for three reasons: by exploring the learned
representations in latent space, we can discover new predic-
tive features of Earth’s climate system that can be used to
inform the simpler physics and regression models; evaluat-
ing the log-likelihood of the output of other models can be
used to assess their quality, giving a quantitative benchmark
against which to compare various physical simulations; and
we can sample from these models to generate a much larger
set of plausible observations1.

2. Background & Related Work
2.1. Climate Informatics

Much of the past successful work in Climate Informatics
has utilized Gaussian process regression (Camps-Valls et al.,
2016), known in geostatistics as kriging, or tensor regres-
sion (Bahadori et al., 2014). More recently, He et al. (2019)

1There is evidence to suggest that statistical models trained
on physical simulations learn an accurate representation of the
interactions of Earth’s physical systems (Barnston & Livezey,
1987; DelSole & Banerjee, 2017). On the other hand, generating
“bad” samples has been shown to produce better results in some
settings (Dai et al., 2017).



Reversible Deep Generative Models for Climate Informatics

used a weighted LASSO technique to regress land tempera-
ture on sea surface temperature for promising results. Their
approach utilized external relational knowledge; the `1 co-
efficient regularization penalties were set proportional to
the distance between the particular sea and land locations.
This demonstrates the potential for improvement to existing
techniques when leveraging idiosyncrasies specific to the
task at hand.

Clearly, there remains a lot of room for exploration in this
field. State of the art results tend to be achieved due to a
new collection of data or an ensemble technique involving
multiple regression models (Hwang et al., 2018). Much
work is still being done towards simply defining an appro-
priate metric for evaluating model quality (Council, 2010;
National Academies of Sciences & Medicine, 2016). Be-
cause of this dearth of existing work, we believe a lot can be
accomplished by leveraging recent machine learning results
to build more accurate statistical models of Earth’s weather
system.

2.2. Normalizing Flows

The idea of normalizing flows was first suggested by
G. Tabak & Vanden-Eijnden (2010), though the concept
of iterative Gaussianization for density estimtation came
much earlier (Chen & Gopinath, 2001). The recent in-
crease in interest began when Rezende & Mohamed (2016)
demonstrated that normalizing flows are an effective tool
for achieving complex approximations to the true posterior
distribution in variational inference (Kingma & Welling,
2013).

Consider some smooth, invertible function f : Rd → Rd

and its inverse. Suppose we draw some random variable
from a known base distribution zzz ∼ q(zzz) and apply f to
get some new random variable zzz′ = f(zzz). Then there is a
simple formula for the density of the transformed variable:

q(zzz′) = q(zzz)

∣∣∣∣det ∂f−1∂zzz′

∣∣∣∣ = q(zzz)

∣∣∣∣det ∂f∂zzz
∣∣∣∣−1

where the second equality is known as the inverse function
theorem. The determinant of the Jacobian of f at the point
zzz represents the local expansion or contraction of density,
and the end result is a valid probability distribution, hence
the term “normalizing”.

In order to ensure that the function is invertible and the
determinant of its Jacobian can be efficiently computed,
various constraints must be placed on its architecture. This
somewhat limits its flexibility, but we can get around this
by chaining together several such functions. The flow then
becomes:

zzzK = fK(fK−1(. . . f1(zzz0) . . .))

and log-likelihood evaluation for training can be similarly
calculated:

log qK(zzzK) = log q0(zzz0)−
K∑

k=1

log

∣∣∣∣det ∂fk
∂zzzk−1

∣∣∣∣
Dinh et al. (2014) previously suggested a similar formula-
tion, but restricted their transformative function to ensure
a Jacobian determinant of 1, simplifying the above expres-
sion. Rezende & Mohamed (2016) present several classes
of functions with Jacobians and inverses that are particularly
easy to compute. Subsequent work has developed functions
that are more expressive, while leveraging parallelizability
to allow for efficient inference and sampling.

One such approach that has proven particularly popular
is using a bijective autoregressive neural network. Since
each dimension only depends on the dimensions before it in
the chosen ordering, the Jacobian of this transformation is
triangular. As a result, the determinant is simply the product
of the diagonal terms and is easy to calculate.

A Masked Autoregressive Flow (Papamakarios et al., 2017)
learns a network that maps the observed variables to a dis-
tribution over the latent variables. This allows for efficient,
parallelizable inference; however, sampling from this model
is slow as each dimension of the output must be sampled
before the next one can start.

Alternatively, Kingma et al. (2016) suggest an Inverse Au-
toregressive Flow. This is similar to a MAF, but the neural
network is applied to the base distribution rather than the
transformed distribution. As a result, sampling can be done
easily, but inference requires serial recovery of the base
dimensions. Both MAF and IAF make use of a Masked
Autoencoder for Distribution Estimation (Germain et al.,
2015), which allows for parallel autoregressive neural net-
work evaluation (rather than learning and evaluating a dif-
ferent network for each conditional distribution).

More recent work has utilized Neural Ordinary Differential
Equations (Chen et al., 2018), in which a neural network
parameterizes the derivative of the hidden state to represent
a continuous-depth model—the output is then the solution
to an ODE. Extending this further on normalizing flows,
Grathwohl et al. (2018) introduce FFJORD, an efficient
algorithm for continuous, reversible flow of density.

3. Methods
3.1. Our Approach

In this report we work with z-scored monthly mean sea sur-
face temperature (SST) observations. The dataset does not
actually contain the true observations—rather, it consists of
the simulated observations from thirteen different dynami-
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cal models. The dataset further includes the true observed
average land surface temperatures (LST). The most immedi-
ate idea would be to regress LST on SST, such as in He et al.
(2019); however, we feel the field of existing approaches of
this flavor is somewhat saturated—not to say that progress
cannot be made, but the recent literature heavily implies
such progress can expect to be incremental at best. Because
of this, we hoped to find a new angle from which to attack
the problem.

Figure 1. A depiction of the locations for which we have simulated
mean monthly observations of SST from 13 models over the period
1849-2005. Notice that some locations that might be expected to
have observations are conspicuously absent.

Density Estimation One novel direction we might con-
sider is to throw away the regressands and instead put effort
into modeling the distribution of observations. This is quite
different from previous approaches, but it offers several
distinct and complementary benefits which can further im-
prove the predictive ability of existing models. To begin
with, modeling the density of SST is an excellent tool for
anomaly detection. If we retain temporal information of our
observations, we can segment our dataset into two or more
contiguous chunks of observations. We can then learn the
distributions of each of these chunks to assess if there is in-
deed a distributional shift. Knowledge of the details of this
shift would potentially be more helpful than the integration
technique of standard SARIMA models2.

The primary appeal of modeling the distribution, however, is
the flexibility it gives us in dealing with the difficult realities
of climate data collection in the real world. For medium- to
long-term weather prediction, our hope is to achieve long-
range forecasts that ignore the short-term chaotic nature of
weather, while still picking up slower-moving, potentially
aperiodic patterns. One way of doing this is to simulate the

2The “I” in SARIMA stands for “integration”, which refers
to the choice to subtract from each time-series observation the
previous observation’s value. This helps to remove some of the
non-stationarity of the data by modeling differences rather than
absolute values, similar to a residual neural network.

weather with different initial conditions, to get a sense of
the long-range, invariant effects that repeatedly appear.

Unfortunately, we are confined to only a single reality, and
therefore we get to see only one true time-series of obser-
vations; coming up with different but physically plausible
initial conditions can be challenging. A common remedy is
to simulate Earth’s climate with different dynamical models
(as in He et al. (2019)), but these systems are massively com-
plicated and slow and costly to execute. In 2016, more than
seven percent of the compute power of the world’s 500 most
powerful computers was completely dedicated to numerical
weather simulation and prediction (Feldman, 2017). If we
want to learn these long-range properties of Earth’s climate,
it would be more efficient to learn a graphical representation
of the underlying distribution of SSTs, making sampling
new feasible points much easier.

On top of this, missing data is a very common problem in
Climate Informatics (Council, 2010; National Academies of
Sciences & Medicine, 2016). As further evidence, note
that even our dataset is missing observations for a set of
locations which should be present, including one entire lon-
gitudinal line through Asia (see Figure 1). This exemplifies
a typical issue with such a nascent field, which is the lack
of standardized data which can serve as a baseline against
which all approaches can be equally compared. By learning
the distribution of observations, we can sample from the
appropriate conditional distribution to fill in these missing
values.

These two goals, sampling from the full and conditional
distributions of global SST, are the primary focus of this
work. Implementing a normalizing flow model for such a
dataset is relatively simple, though it remains to show that
such a model can better approximate the distribution than
existing baselines, and that it can do so without overfitting.
Conditional sampling, on the other hand, requires a bit more
care.

3.2. Markov Chain Monte Carlo

Ideally, given a normalizing flow model which defines some
distribution p(x) for x ∈ Rd, we might hope to be able to
directly find a closed form for the conditional distribution.
Consider partitioning an observation x into two disjoint sets
of dimensions, x1 and x2. With a bit of abuse of notation,
we wish to evaluate px(x2 | x1). By Bayes’ Law, we have

p(x2 | x1) =
p(x1, x2)

px(x1)
=

p(x)∫
p(x1, x2)dx2

The numerator is given; it is precisely the value our model is
constructed to be able to easily evaluate. The denominator,
however, is more troublesome. Because of the arbitrarily
complex ways in which a normalizing flow mixes each of
the dimensions together at each transformation, there is no
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Figure 2. Four observations from the dataset. Each observation consists of sea temperatures at a grid of locations evenly spaced throughout
the earth’s oceans. We visualize each observation by plotting the temperature of each grid point as a color — red is hotter, blue is colder.
Observe that the data exhibits interesting structure: dimensions with the same latitude are likely to be positively correlated.

simple closed form for this integral. It is clear that an ana-
lytical result of this expression in the context of normalizing
flows is intractable. As a result, direct sampling from this
conditional distribution is infeasible.

Instead, we consider sampling via Markov Chain Monte
Carlo (MCMC). This family of techniques allows us to sam-
ple from a distribution from which sampling might normally
be difficult, provided that we are able to evaluate the proba-
bility of the desired distribution up to a constant. Note that,
for a fixed x1,

p(x2 | x1) ∝ p(x1, x2) = p(x)

Thus, we are able to evaluate the likelihood up to a constant,
and we can therefore consider MCMC for sampling from
the conditional.

The simplest choice would be to simply implement
Metropolis-Hastings (MH), but in such high dimensions
this is unlikely to work. If the proposals are too close to the
current point we will never converge to the true distribution;
likewise if the proposals are too far they will be rejected
far too frequently to ever get anywhere. Additionally, we
can reasonably expect the distribution of SSTs to be sharply
multimodal, inducing a probability distribution which MH
typically struggles to fully explore. Instead, we implement
a modified MCMC algorithm known as Hamiltonian Monte
Carlo (Neal, 2012; Betancourt, 2017).

3.3. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) dramatically improves
the efficiency and reduces the autocorrelation of the “blind”
sampling process of MH by relating the sampling process
to a dynamical system; HMC lifts the distribution into a
higher dimensional phase-space over which a set of ODEs
has been defined whose attractor sets correspond to areas of
higher likelihood.

Concretely, HMC starts by mapping a point x in the d-
dimensional sampling space to an element in phase space
by concatenating it with d-dimensional momentum vec-
tor, m. A joint distribution over the phase space, known
as the canonical distribution π, is then defined so that∫
m
π(x,m)dm = p(x), which in turn defines the Hamilto-

nian H—a useful quantity borrowed from classical mechan-
ics.

Analogous to physical systems, H(x,m) encodes the total
energy of the system as the sum of the kinetic and potential
energies. We expect the total energy to be constant over
time, governed by the following Hamiltonian dynamics:

dx

dt
=
∂H

∂m
=
∂K

∂m
dm

dt
= −∂H

∂m
= −∂K

∂x
− ∂V

∂x

By design, the attractor sets of this vector field correspond to
areas of high likelihood under p; thus, given an initial start-
ing point, following this Hamiltonian leads us to desirable
samples. While standard ODE approximation techniques
can handle this task, the second-order method of leapfrog
integration has proven to be particularly well suited here
given the form of this system, providing computational and
stability advantages.

Evaluating the Gradient In addition to being able to
evaluate the likelihood up to a constant factor, HMC requires
that we have access to the gradient of the log-likelihood,
∇x2

log p(x2 | x1). For a typical implementation, we would
ideally have either a closed form of this derivative, or we
would take advantage of the autodiff feature to evaluate
the derivative automatically. In this instance, we neither
have a closed-form log-likelihood, nor does our system ever
actually evaluate p(x2 | x1) directly. However, a simple
observation means we can still make use of this powerful
algorithm:

∇x2
log p(x2 | x1) = ∇x2

[log p(x)− log p(x1)]

= ∇x2
log p(x)

When we evaluate log p(x) we get∇ log p(x) for free, and
we can simply drop the dimensions corresponding to the
values of x1 to exactly determine the desired partial deriva-
tives.
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4. Experiments
4.1. Dataset

The dataset consists of 24,612 observations; each observa-
tion is a vector of dimension 5881, consisting of the sea
surface temperature recorded at 5881 distinct sea locations
at 2.5◦ × 2.5◦ gridded points on the Earth. These grid
locations are depicted in Figure 1.

We randomly partitioned the dataset into a training set of
size 21,612, a validation set of size 1,000, and a testing set
of size 2,000. We then z-scored each of these sets according
to the sample mean and variance of the test set.

Figure 2 shows four observations from the dataset visualized
as heatmaps—red for positive temperature deviations, blue
for negative (i.e., hotter and colder). Note the structured na-
ture of the data: the sea temperatures at grid locations at the
same latitude are highly positively correlated. Additionally,
the sea temperatures tend to be consistent within each of the
the northern and southern hemispheres.

4.2. Multivariate Gaussian Baseline

Our baseline density model was a multivariate Gaussian
distribution x ∼ N (µ,Σ) where the mean vector µ ∈ Rd

and covariance matrix Σ ∈ Rd×d are estimated from the
training data.

The unregularized MLE estimator takes µ as the sample
mean 1

n

∑n
i=1 xi and Σ as the sample covariance matrix

1
n

∑n
i=1 xix

T
i . However, since there are 5881 dimensions

and only 21,612 training points, we suspected that overfit-
ting might be an issue. Therefore we further experimented
with three regularization schemes:

1. Use a diagonal Gaussian model instead, i.e. x ∼
N (µ, diag(σ)).

2. Use a full-covariance Gaussian, but “shrink” the covari-
ance matrix (Schafer & Strimmer, 2005) by taking Σ
to be a convex combination of the empirical covariance
matrix (weight α) and the identity matrix I (weight
1− α). Tune α on the validation dataset.

3. Same as above, but with α computed from the training
set using the Ledoit-Wolf formula (Ledoit & Wolf,
2012).

The train and test (average) log-likelhoods of these four

methods are shown in Table 1. Observe that the full covari-
ance MLE estimator with no regularization slightly overfits.
In contrast, the diagonal Gaussian MLE estimator substan-
tially underfits. The best two methods are the two shrink-
age estimators for the full-covariance model. Of these, the
Ledoit-Wolf method attains a slightly higher test accuracy.
For this reason, we use the Ledoit-Wolf estimator as the
Gaussian baseline in the remainder of this paper.

Figure 3 shows four samples from the Gaussian baseline.
The Gaussian baseline broadly picks up on the pattern that
temperatures at similar latitudes are correlated, but it doesn’t
quite seem to understand that neighboring latitudes should
also have low variance. There are several locations with
rapidly-changing temperatures across a short distance in the
North-South direction, which should be very unlikely based
on the original observations.

4.3. Real NVP

LAYERS TRAIN TEST
1 -824.07 -1050.58
2 6019.32 5615.01
3 7522.79 7138.43
4 8328.33 7478.42
5 8487.2 7964.5
7 9719.95 9021.75

10 9627.52 8260.2

Table 2. Train and test log-likelihoods of Real NVP with 400 hid-
den units in the neural network of each affine coupling layer, as
the number of affine coupling layers is varied. We suspect the
decrease from 7 to 10 layers was due to optimization challenges.

Model description Our principal model was Real NVP
(Dinh et al., 2016). Real NVP is a reversible generative
model which consists of a series of “affine coupling layers,”
each an invertible transformation whose Jacobian determi-
nant is efficiently computed. Each affine coupling layer
fk : Rd → Rd involves a partitioning of the d dimensions
into two index sets S1, S2 ⊂ [d] of sizes |S1| = d1 and
|S2| = d2. The forward equations for an affine coupling
layer with input x ∈ Rd and output y ∈ Rd are as follows:

yS1 = xS1

yS2 = xS2 ◦ ak(xS1) + bk(xS1)

where ◦ is element-wise multiplication. Here, ak : Rd1 →
Rd2 and bk : Rd1 → Rd2 are functions which determine

SPLIT SHRINKAGE LEDOIT-WOLF FULL COVARIANCE DIAGONAL COVARIANCE
TRAIN 8921.74 8760.49 9123.27 -8344.77

TEST 7779.99 7819.00 7318.10 -8362.4

Table 1. Train and test log-likelihoods of four baseline models on the sea surface temperature dataset. The strongest baseline is LEDOIT-
WOLF. Notice that FULL COVARIANCE overfits and DIAGONAL COVARIANCE severely underfits.
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Figure 3. Four samples from a multivariate Gaussian density model. Compare these samples to the real data in Figure 2.

how to shift and scale the dimensions in S2 using the dimen-
sions in S1 (they are typically implemented as feed-forward
neural networks). Observe that this transformation is in-
tervible! Given some y, we can recover the original x as
follows:

xS1
= yS1

xS2 = (yS2 − bk(yS1))/ak(yS1)

The Jacobian determinant of this transformation is also easy
to compute. The Jacobian is triangular, and therefore its
determinant is simply the product along its diagonal. More
concretely, we have∣∣∣∣det∂f∂z

∣∣∣∣ = exp

(∑
k

ak(xS1
)

)

A single affine coupling layer is not a very expressive trans-
formation, but by composing together a series of affine
coupling layers sequentially, we can transform the base den-
sity to an arbitrarily complex target density. To ensure that
all dimensions are able to affect each other, the partitioning
[d] = S1 ∪ S2 needs to change from layer to layer. We
followed Dinh et al. (2016) by taking S1 and S2 to be the
even and odd dimensions, alternating from layer to layer.

HIDDEN UNITS TRAIN TEST
100 6645.26 6399.80
200 7844.4 7469.83
400 8487.2 7964.5
800 9606.95 8665.56

Table 3. Train and test log-likelihoods of Real NVP with 5 affine
coupling layers as the number of hidden units in the neural net-
works of each affine coupling layer is varied.

Hyperparameters We implemented each ak and bk as
a single neural network with two hidden layers with input
dimension d1 and output dimension 2d2. We chose the
number of hidden units in each of these layers, as well as
the overall number of affine coupling layers, according to
performance on a held-out test set.

Table 2 and Table 3 show the performance of the model
as these two hyperparameters are varied. We obtained the
best test log-likelihood using 7 affine coupling layers with
400 hidden units in each layer of the shift and scale neural
networks.

Performance Table 4 shows that the test-set log likeli-
hood of our Real NVP model vastly exceeded the test-set
log-likelihood of our Gaussian baseline.

MODEL TRAIN TEST
GAUSSIAN 8760.49 7819.00

REAL NVP 9719.95 9021.75

Table 4. Train and test log-likelihoods of our Gaussian baseline,
and a Real NVP model with 7 affine coupling layers with 400
hidden units each.

Figure 4 shows unconditional samples from our Real NVP
density model. We can see that this model estimates the
distribution of sea temperatures significantly better—the
temperatures at nearby longitudes are more coherent (mir-
roring the real data) than unconditional samples from the
Gaussian baseline.

4.4. Further Analysis of Learned Model

In an attempt to understand and verify the distribution
learned by our model, we examine the trained model’s
likelihood as we perturb the data to become dissimilar to
true weather patterns. This process allows us to determine
whether the model has learned a distribution which aligns
with our external knowledge, at a minimum by placing
higher likelihood on observations which we recognize as
realistic weather. We go about this analysis by recording the
model’s response to 1-dimensional perturbations of the test
set data. The way in which we perturb the data is carefully
chosen to preserve some critical properties of the original
data while violating others.

Let D be the test-set prior to z-scoring. For various values
of α, we evaluate the model over the following α-dependent
datasets:

Saffine(α) = Z-score({(1− α)x+ mean(x)|x ∈ D})

Sconst(α) = Z-score({x+ α|x ∈ D})

where mean(x) = 1
dim(x)

∑dim(x)
i=1 {x}i and addition is

done independently to each dimension. Thus, Saffine is
a combination of a true observation and an unrealistic
world where all locations have the same temperature, while
Sconst is the result of adding a constant value to all di-
mensions (which becomes more unrealistic as |α| grows).
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Figure 4. Four samples from a Real NVP density model. Compare these samples to the real data in Figure 2 and to samples from the
Gaussian baseline in Figure 3.

While these transformations lose certain properties of real
weather, they are designed to retain others: Saffine(α) pre-
serves the per-instance mean temperature while changing
inter-location temperature differences, and Sconst(α) pre-
serves the difference in adjacent temperatures while mod-
ifying the per-instance mean. Notice that by definition,
Saffine(0) = Sconst(0) = D, which is appropriate given α
is intended to indicate the degree of displacement from the
original test instances.

Figure 6 displays the model’s log-likelihoods as we vary α.
Note that the log-likelihood is always strictly maximized
around α = 0, suggesting Real NVP is not simply relying on
mean global temperature or local temperature consistency
alone to evaluate likelihood. Comparing the two sub-plots,
the model is far more sensitive to changes in global mean
temperature than changes in local temperature differentials,
while being asymmetrically effected by the direction of
change.

Summarizing, we see that our model has recovered multi-
ple facets of weather’s defining properties, and it assigns
higher likelihood to real data than semi-realistic fake data.
This provides further evidence that the model has learnt a
distribution that meaningfully relates to Earth’s climate.

4.5. Imputation

Density estimation is a widely studied task at which deep
generative models have been shown to excel. But the clas-
sical framework of probabilistic graphical models studies

Figure 6. Response plots for RealNVP over expert-chosen sub-
spaces. We report the median to be robust to outliers which are
present in the results.

a multitude of other tasks as well. In particular, classical
PGMs generally support efficient operations like condition-
ing. Little previous work has studied the problem of com-
puting conditional probability distributions with reversible
deep generative models. We chose to evaluate the feasibility
of this idea by applying DGMs to imputation.

The task of imputation is this: given a fitted density model p
and a data point x ∈ Rd, conceal a subset of the dimensions
S2 ⊂ [d] and try to predict them from the remaining dimen-
sions xS1 . How to make such a prediction x̂S2 , given a fitted
density model p? One way is to compute the conditional
expectation of the dimensions in S2, given the dimensions
in S1:

x̂S2 := EXS2
∼p(XS2

|XS1
=xS1)

[XS2 ]

Figure 5. Imputations of two data points. From left to right: the original example, the example with every other dimension hidden (drawn
in black), the imputation by the Gaussian baseline, the imputation by the Real NVP with HMC.
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In this report, we measure the quality of the imputation
x̂S2 by computing the difference between x̂S2 and xS2 in
squared `2 norm: ‖x̂S2 − xS2‖22.

We chose to alternate in earth grid space between concealed
and visible dimensions. This setup is visualized in the sec-
ond column of Figure 5. The blacked-out dimensions are
the ones which we conceal. It is important to note that the
model treats each dimension separately and is not given the
spatial structure, so the task is indeed challenging.

Gaussian baseline If p is a multivariate Gaussian distri-
bution X ∼ N (µ,Σ), there is a well-known closed-form
solution for the conditional expectation of the dimensions
S2 given the dimensions S1:

x̂S2 = µ2 + Σ21Σ
−1
11 (xS1 − µ1) (1)

The third column of Figure 5 shows two examples of impu-
tation using the Gaussian baseline.

Reversible generative models For a reversible genera-
tive model, there is no way to exactly compute the condi-
tional probability distribution of xS2

given xS1
, nor can we

precisely evaluate the expectation of that distribution. There-
fore, as discussed above, we approximated the conditional
expectation using Hamiltonian Monte Carlo.

Figure 8 illustrates this process for a single data point x.
Each of the four subplots in Figure 8 is a single dimension
in S2. The green line is the true, concealed value; the
orange line is the Gaussian density that is predicted using
the Gaussian baseline and Equation (1); and the blue lines
are samples from the conditional distribution of XS2

|XS1
=

xS1
under the normalizing flow, sampled using Hamiltonian

Monte Carlo. Observe that both the Gaussian baseline and
normalizing flow / HMC combination do a decent job at
predicting the concealed dimension.

HMC vs MH We found that HMC consistently outper-
formed the random-walk MH baseline for normalizing flow
conditional sampling. Figure 7 shows the log-probability
during burn-in of HMC compared to MH across three differ-
ent settings of the proposal distribution variance. Since each
HMC “step” involves a number of gradient evaluations, it
would be unfair to compare MH to HMC on a step-by-step
basis. Therefore, we instead compare the progress of the
two algorithms in terms of the number of function or gradi-
ent evaluations. Observe that the HMC chain attains a much
higher log-probability and it does so at a faster rate. This
is because HMC leverages access to gradient information,
whereas random walk MH does not.

Tuning HMC Hamiltonian Monte Carlo needs to be
tuned extensively. Theoretically, the step size should be

Figure 7. Comparing HMC to random-walk Metropolis Hastings.

as small as possible (to minimize effects of time discretiza-
tion) and the number of steps simulated should be very large
(to allow the dynamics to fully explore the distribution).
Realistically, this would be computationally infeasible, and
we instead tune a careful balance.

Figure 9 shows, for a fixed number of time steps and for four
separate settings of the step size, a plot of the log-probability
during iterations 250-500 of the burn-in period. Observe
that the step size plays a role similar to that of the proposal
variance in MH: when the step size is too small (top left),
the chain converges to its stationary distribution too slowly
— at the end of the burn-in period, the chain is still yet to
converge. On the other hand, when the step size is too large
(bottom right), no proposals are accepted, and the chain
does not move anywhere.

Warm-starting HMC While HMC mixed much faster
than MH, it was still far too slow when we initialized the
chain randomly (i.e. drawn from a Gaussian distribution).
Therefore, we also experimented with warm-starting HMC
with a sample from the conditional Gaussian model. This
warm-start approach resulted in significantly faster conver-
gence to the stationary distribution.

The top and bottom rows of Figure 10 plot the log-
probability of the chain, during the burn-in period, when the
chain is warm-started and cold-started, respectively (note
the differing scales for the number of iterations). Observe
that the warm-start model after just 250 steps attains a log-
probability of about 9050, whereas the cold-start model after
7,500 steps only attains a log-probability of -18500.

5. Conclusion
In this paper we have conducted the first experiments on the
feasibility of reversible deep generative models applied to
the challenging field of Climate Informatics. Despite the
small sample size, we found that Real NVP, a relatively
simple normalizing flow architecture, significantly outper-
forms existing baselines for density estimation and, with
a few computational tricks, performs comparably in the
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Figure 8. Computing conditional expectations using HMC.

task of imputation. We further provided several compelling
arguments for the uses and benefits of effective density es-
timation: being able to sample from the full or conditional
distribution of Earth’s SSTs can be thoughtfully leveraged
for significantly improved medium- to long-term weather
forecasting.
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