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Abstract
Stylistic music generation requires human con-
trols over high-level music features, e.g., rhythm,
pitch, structure, and genre. While Structure is a
key notion for both music generation and repre-
sentation learning, most existing generative mod-
els for music either adopt hard-coding structures
or merely implicitly inherit the structure from the
training pieces. Consequently, it is still difficult
to control music structure in a flexible way in or-
der to create new pieces. In this paper, we pro-
pose several novel ways trying to represent mu-
sic structure using the framework of Conditional
Variational Auto-Encoder (CVAE). Furthermore,
we explore the problem of disentanglement of
the representations of music structure and con-
tent for long music pieces. We show in the results
that we can extract the bar-level structure of a
long music piece while creating novel pieces via
swapping the representations of different pieces.

1. Introduction
Stylistic music generation is an interesting and important
topic in computer music, music therapy and computational
creativity. With the development of deep generative mod-
els, researchers have developed several new models for mu-
sic generations, like MusicVAE (Roberts et al., 2018) and
MidiNet (Yang et al., 2017), the aim of which is to train
a model that create new pieces without human guidance.
However, music generation in practice does not always ex-
pect computers to freestyle; we want to keep in charge of
some stylistic property of the generative piece. For ex-
ample, we may ask the questions like how to generate a
melody given a specific chord progression, how to gener-
ate pitch contour given rhythm, or how to generate a similar
piece given a sample. This requires us to develop genera-
tive models with stylistic controls.

In this project, we investigate the problem of generating
lead melody, an important element for modern popular mu-
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sic. Under this setting, we can classify stylistic controls
into two categories:

(1) Internal properties of a melody, e.g., rhythm, pitch con-
tour, structure;

(2) External context, e.g., chord sequence, tonality.

A successful generative model with a specific stylistic con-
trol should be able to analyze and disentangle such feature
automatically if it is an internal property, as well as to gen-
erate a new one consistent with human’s controls.

Notice that these two processes are highly related to VAE,
as the analysis part can be performed by the encoder and the
generation part can be performed by the decoder. There-
fore, we believe that VAE is a good starting point for fur-
ther implementation.

Among these stylistic features, structure is the most dif-
ficult one to handle both in analysis tasks and generation
tasks (Paulus et al., 2010; Dai et al., 2018). Music struc-
ture itself is a complex phenomenon. First, music structure
is a multi-level concept (Hamanaka et al., 2018). On bar
level, the structure may refer to how nearby music notes
are grouped; on phrase-level, the structure may refer to lo-
cal repetition and similarity; on song level, the structure
may refer to the organization of different segments (e.g.,
verses and chorus). Secondly, structures may refer to a
variety of composition technologies including repetition,
duality, melodic sequence and motivic development. The
complexity of music structure makes it difficult to be mod-
eled. Currently, mainstream models including MusicVAE
and MidiNet still struggle with generating melodies with
nice structural properties.

The aim of the project is to design a new deep generative
model based on MusicVAE (Roberts et al., 2018) for stylis-
tic melody generation. For internal properties controls, we
will focus on a new generative model with the ability to
automatically analyze and separate the concept of music
structure given a music piece, and the ability to generate
new songs consistent with the given structure representa-
tion. The model combined VAE and self-attention, a pop-
ular architecture for modeling sequence structure. For ex-
ternal context, we will propose a conditional version of the
system that utilizes the chord sequence and the tonality as
an external control. We will provide some experimental
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results on the model, including the effectiveness of such
controls and musicality of generated pieces.

2. Related Work
2.1. Stylistic Music Generation

Traditionally, rule-based expert systems, automata and
Hidden Markov Models (HMM) are widely used in au-
tomatic music generation tasks (Conklin & Witten, 1995;
Lo & Lucas, 2006; Thornton, 2009). Commonly, they all
require human-defined style parameters for music genera-
tion. It is therefore hard for the systems to adapt to new
styles in general.

Recently, the development of deep generative models pro-
vides researchers with new insight for sequence generation.
In the recent two years, deep generative models became
widely adopted in music generation. For example, Deep-
Bach (Hadjeres et al., 2017) proposed a method to generate
Bach-style music. DeepBach adopts a Long Short-Term
Memory (LSTM) network for melody modeling and uses
a pseudo-Gibbs Sampling technique for music generation.
While the results are exciting, it is worth noticing that the
methods in DeepBach are hard to be reproduced on other
music styles as the model incorporates strong assumptions
on Bach’s style into the model itself. Another model, DeepJ
(Mao et al., 2018) combined a Biaxial LSTM architecture
with additional genre conditioning at every layer. To get
a parametric representation of the music genre, the model
uses one embedding layer to learn the distributed represen-
tation and then another fully-connected hidden layer is ap-
plied. The generated samples by DeepJ did demonstrate
the stylistic generation. However, the generated piece still
lacks long term structures, and a large amount of data is
required for training a new genre.

Other attempts include the usage of popular deep genera-
tive models. The MidiNet (Yang et al., 2017) adopts Gener-
ative Adversarial Networks (GAN) for fixed-length music
generation and the MusicVAE (Roberts et al., 2018) uses
the Variational AutoEncoder (VAE) model for melody gen-
eration. We will discuss about MusicVAE in detail in 2.3.

2.2. Variational Autoencoder

The variational autoencoder (Kingma & Welling, 2013) are
powerful latent variable models which consist of an en-
coder and decoder. The encoder compresses training data
into a latent space, to learn a Gaussian probability density
qθ(z|x), from which we can sample to get noisy values of
representations z. The decoder uses the representation z to
reconstruct the original data. Ideally, the latent variable z
captures the probability characteristics of giving data points
in the datasets. Recently, VAE and its variance have been
applied to many fields of applications, and perform efficient

inference by deep neural networks. Conditional-VAE is
proposed by giving labels into input, and gained impressive
performance in Attribute2Image (Yan et al., 2016). Since
we noticed that harmonic context is an important factor
in both perception and composition process, it can be re-
garded as a condition to the model and should be provided
to both the encoder and decoder as a condition. Conditional
VAE will be applied in our further implement.

However, one drawback of using a single latent unit is that
it is sensitive to changes in one factor, while not for other
factors. Therefore, disentangled representation are usually
factorized so that different independent latent units encode
different independent factors in data. In our experiment,
the melody contains two important musical factors: the
pitch contour and the rhythm pattern. They can be sepa-
rated into two latent vectors and have their specific defined
loss function. Traditional attempts to learn disentangled
representations under supervised learning, which is unreal-
istic in our domain. One famous unsupervised approaches
β−VAE (Higgins et al., 2017) proposed to add an extra
hyper-parameter to the original VAE objective, which al-
lows constraints on the encoding capacity of latent vectors
and encourage factorization.

2.3. MusicVAE

MusicVAE (Roberts et al., 2018) adopts the idea of VAE
for melody generation. In this model, the piano roll of a
monophonic melody line m is fed into the encoder to get a
latent variable zm, and the decoder tries to reconstruct the
melody from zm. The encoder and the decoder use LSTM
cells to process variant-length data.

The major contribution of the work is to show that VAE
is a viable generation model for music melody, as the
model successfully generated musically meaningful 2-bar
samples by interpolating between the latent code of given
melodies. However, the model fails to generate, or even
reconstruct a long piece (e.g., 16-bar samples) well even
if it explicitly adopts a hierarchical architecture for the de-
coder. Also, it is not a stylistic melody generator as no dis-
entanglement is performed on the latent space yet. Thus,
we cannot control the stylistic parameters of the generative
melody in an initiative way. These two issues of MusicVAE
inspired us to work on the project.

2.4. Attention-Based Music Generation

The attention mechanism is adopted in sequence to se-
quence models and achieved huge success in many genera-
tive tasks like machine translation (Vaswani et al., 2017).
Such a mechanism can help the model focus on certain
inputs to the fore while diminishing the importance of
the others. (Huang et al., 2019) combined self-attention
with seq2seq model, trying to generate music while keep-
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ing long-term structures and achieved better results com-
pared to only using LSTM without self-attention. Their ex-
periment demonstrated that training with relative attention
has benefits for learning long-term structural information.
However, this can not be directly used in VAE, since com-
pared with LSTM encoder, lots of information is lost when
VAE encodes inputs into latent variables.

There are also some working attempts to combine varia-
tional attention for sequence-to-sequence models (Bahu-
leyan et al., 2017a). Such mechanism works on the Vari-
ational Encoder-Decoder models (e.g., for machine trans-
lation), but due to different encoding targets, these models
cannot be directly applied to VAEs.

3. Proposed Methods
We here propose three methods that we experiment with
during the entire semester. We will discuss the advantage
and disadvantage of each method in the discussion section.

3.1. Bar-Level Similarity Representation

Symbolic music can be regarded as a highly structured se-
quence, with repetition and similarity on different scales. It
is generally hard to model music structures both in tran-
scription problems and generation problems, and a uni-
fied representation of music structure is not yet concluded
(Paulus et al., 2010).

Assume that a music melody is denoted as a sequence
m1..n. Typically, a token mi refers to the note sequence
in one bar or one beat. In our project, we use one bar for
convenience. A traditional metric for describing the mu-
sic structure is the similarity matrix T, in which each cell
Tij denotes the correlation between certain music elements
(e.g., melody or rhythm) between mi and mj .

Figure 1. An example of music structure analysis of the first four
bars of the song Two Tigers. The song contains exact repetitions
as well as inexact similarity in pitch contour.

Notice that although the similarity matrix T is very con-
venient for music analysis, it is still not obvious how to
generate a new piece according to T itself. Therefore, we
here design a new form of similarity representation with
the capability of both analyzing and generation. We call

Figure 2. An example masked self-attention similarity matrix of
the song Two Tigers (Best viewed in color). The red cells are
masked out to zero. Darker blue denotes a larger attention value.

it Masked Self-Attention Similarity Matrix, or MSASM in
short.

Given a melody piece m1..n, the h-th MSASM Ah is an
n× n matrix given by

Ahi,j =

{
Softmax

(
Qh
iK

h
j+S

h
i−j

T

)
i ≥ j

0 i < j
(1)

Where T is the temperature hyper-parameter,Sh is the rela-
tive position encoder proposed by (Huang et al., 2019), and
Qh, Kh are the attended variable given by

Qh
i = Wh

QEncoder(mi) (2)

Kh
i = Wh

KEncoder(mi) (3)

And h = 1..H is the head number. Notice that each head
may attend on a different property between two bars mi

and mj . For example, some heads focus more on the rhyth-
mic similarity while others focus more on the pitch contour
similarity.

In the decoding phase, we utilize the similarity matrix to
generate a new sample that shares a similar music structure
to the provided one. Given a hidden representation z1..n
of each bar, we reweight them according to the attention
values in A to get a structure-aware representation:

zhi = Wh
V zi (4)

z′i
h =

{
zhi i = 1

zhi A
h
i,i +

∑i−1
j=1 z

′
j
hAhi,j i > 1

(5)

z′i = Concat(z′i
1, ..., z′i

H) (6)

It is worth noticing that the formula is not exactly the same
as in the original transformer model (Vaswani et al., 2017),
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where z′j
hAhi,j are replaced by zhjA

h
i,j . This is because we

are allowing chained similarity, for example, if bar 3 is sim-
ilar to bar 2 and bar 2 is similar to bar 1, it does not nec-
essarily imply bar 3 is similar enough to bar 1, but bar 3
still requires information in bar 1 for reconstruction as they
have some correlation. We will provide a probabilistic ex-
planation of this approach in 3.1.1.

3.1.1. A PROBABILISTIC VIEW

A trivial way to extend the MusicVAE model to arbitrary
music length is to apply a 1-bar MusicVAE on each bar of
the music:

si = Encoder(mi) (7)
zi ∼ Psi (8)
m′i = Decoder(zi) (9)

Where zi is the variational variable and si is the encoded
parameter that controls the variational distribution zi.

Figure 3. The graphical model of the trivial extension of Music
VAE.

Figure 4. An example graphical model of the proposed model.
This graph corresponds to the song Two Tigers as shown in Figure
1

An obvious problem for the model is that the model is not
aware of any structural information of the music. It as-
sumes independence between the representations of each
two bars, as shown in figure 3. Thus, if we resample the
variables z1..n, any inter-bar structural property will be
lost.

However, if we instead sample z′ given by equation (4) for
decoding instead of z, we can retain such dependency.

One implementation problem of the model is the fact that
the MSASM can easily degenerate to a diagonal matrix.
In this case, all the dependencies between bars disappear,
and the model becomes a trivial case. To prevent this from
happening, we pose additional penalties Ld to the MSASM
on the diagonal entries to encourage the model to explore
the correlation between one bar and its previous ones:

Ld(A) =
1

nH

H∑
h=1

n∑
i=1

Ahi,i (10)

The total loss function is given by:

L = Lrecons + λ1DKL(p(z
′ |m)||p(z′)) + λ2Ld(A)

(11)

Where Lrecons is the reconstruction loss and λ1, λ2 are the
hyper-parameters.

3.2. Structured Condition

Human composers always refer to some contextual infor-
mation when producing a music melody. The contextual
information may vary depending on the situation, but the
most common ones are the harmonic context, i.e., the chord
sequence and the tonality, while the chord sequence con-
trols the local, short-term context of a melody and the tonal-
ity controls the long-term context. As the structure of har-
monic context may reflect the structure of melody to some
extent, such condition might be useful for an explicit rep-
resentation of music structure.

Figure 5. The model structure of the hierarchical CVAE.

We here adopt the Conditional-VAE (CVAE) architecture
for our model. The modification from the VAE to its con-
ditional version is simple. For both the encoder and the
decoder, we add a new input providing the whole context
information. However, when the VAE is hierarchical, we
can feed the long-term and the short-term context into dif-
ferent parts of the encoder and decoder. In our implemen-
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tation, we feed the short-term context into local encoders
(decoders) and feed the long-term context into global en-
coder (decoders), as shown in Figure 5.

The major issue here is how to represent the chord sequence
and the tonality into a numerical vector. For chord symbols,
we here adopt a representation method provided by (Raffel
et al., 2014), by denoting a chord into a multi-hot 36-D
vector representing its root, bass and pitch class (i.e., the
chroma vector).

Figure 6. An example representation of the chord E:maj7/b3.

F:major

- - - - - F - - - - - -Tonal Note

Mode Vector major minor others

Figure 7. An example representation of the tonality F:major.

To represent the tonality, we are performing some simplifi-
cation to the problem. We only retain 24 tonality classes
(12 major classes and 12 minor classes) that are most
common for modern popular songs and discard other rare
modes like Dorian and Mixolydian. Also, we do not distin-
guish between natural minor, melodic minor and the har-
monic minor. Under this setting, we use a one-hot repre-
sentation for the 24 tonality classes.

3.3. Content-Structure Disentanglement

One critical problem of the bar-level similarity representa-
tion is the fact that the content representation is still not
compact as different latent codes for different bars may
share similar information, which is redundant. In other
words, the model does not perform disentanglement be-
tween structure and content. To solve this issue, we pro-
pose a new model that try to learn a more compact repre-
sentation for both structure and content.

We introduce a hierarchical β-VAE (Higgins et al., 2017)
whose architecture is shown in Figure 9. The main idea of
the model is to introduce a variational attention matrix A
as a representation for the structure of a melody. In varia-
tional attention (Bahuleyan et al., 2017b), the attention ma-

trix is converted into a variational variable, which is sam-
pled from a continuous representation space.
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Figure 8. An overview of the hierarchical VAE.

The workflow of the model is as follows. To begin with,
we have an input melody m = [m1, ...,mT ] with T bars.
Each mt is first fed into a local encoder to get its bar-level
representation st. The global encoder takes in all st and
outputs the distribution of attention matrix A (the structure
representation) and the global latent variable z (the content
representation of music theme). For the decoding process,
a global decoder is first applied to the sampled global latent
variable z and outputs C fixed-length latent components
[v1, ...,vC ] where C is a hyperparameter. We want each
component vc to represent a distinct semantic factor of the
original melody (e.g., the rhythm or pitch of the theme).
Then, the sampled attention matrix A is used to calculate
the weighted sum of the different latent components vc to
recover the bar-level representation s′t:

s
′(h)
t =

C∑
c=1

A
(h)
t,c vc (12)

s′t = W>
d Concat(s

′(1)
t , ..., s

′(H)
t ) (13)

Here, H denotes the number of heads for the attention
and Wd is a linear transformation matrix. This process
can been understood as rearranging different semantic fac-
tors vc of music content using the structure representa-
tion A. Finally, the local decoders are applied to recover
the melody m′t from s′t for each bar. The loss function
F(φ, θ;m, c) of the model is given by



Stylistic Melody Generation with Conditional Variational Auto-Encoder

F = E
A∼q(A)

φ (·|m,c),z∼q(z)φ (·|m,c)
[log pθ(m|z,A, c)]

−βzDKL

[
q
(z)
φ (z|m, c)‖pz(z)

]
−βaDKL

[
q
(A)
φ (A|m, c)‖pA(A)

]
(14)

where c is the condition for the model, φ and θ are the
parameters of the encoder and the decoder, respectively.

One thing worth noting is why we introduce the variational
attention loss term to the model. We find that in practice, if
A is not variational, then the model will become problem-
atic in a way that A will form a shortcut for information
to transfer from encoder to decoder, and A itself will be
enough to recover the whole melody line without any in-
formation stored in z. The variational attention (Bahuleyan
et al., 2017b) is introduced to solve this issue by adding
some noise to the attention matrix before decoding. Notice
that although the distribution of A can be modeled using a
Dirichlet distribution as each attention vector sums up to 1,
it is not feasible because the reparameterization trick is hard
to perform on Dirichlet distributions. Instead, we still use
a Normal distribution for A prior and then perform exp(·)
and normalization to recover the real attention matrix from
the sampled latent variable.

sample

      

  
 

  

Global  
Decoder

sample

      

  
 

       

Global  
Decoder

A

Global 
Encoder

Global 
Encoder

(a) (b)

Figure 9. Visualization of the reparameterization part (a) without
variational attention and (b) with variational attention.

In our implementation, the global decoder is simply a lin-
ear transformation, and the global encoder is a stacked
Bi-directional Long Short-Term Memory (Bi-LSTM) net-
work. The parameters of the variational distributions A
and z are calculated by a linear transformation to the out-
puts and the hidden states of the Bi-LSTM, respectively.
We adopt the conditional version of MusicVAE (Roberts
et al., 2018) proposed by Yang et al. (2019) for local en-
coders and decoders, using chord progressions as the con-
dition for both of them. All local encoders share the same
parameters, and the same for the local decoders.

4. Experiment
4.1. Dataset

Lack of datasets always poses severe issues for computer
music. In this project, we will mainly use MIDI datasets for
pop songs with vocal melodies, including the Nottingham
dataset (Boulanger-Lewandowski et al., 2012). To make up
for the insufficiency of training datasets, we also created a
new dataset from more than 1000 Chinese Karaoke songs
with symbolic annotations from the state-of-the-art Music
Information Retrieval algorithms (Jiang et al., 2010; Böck
et al., 2016; Mauch et al., 2015). The annotations are not
100% accurate, but our experiments still acquire good re-
sults with them. The whole dataset is augmented by pitch
shifting with the range from -6 semitones to +5 semitones.

In the meanwhile, we collected another dataset from the
website www.hooktheory.com. The website contains
more than 10,000 public music tabs annotated by the
crowd. Most annotations contain phrase-level predomi-
nant melody lines along with its chord and tonality context.
Since the dataset is phrase-level, it becomes a more suit-
able dataset for the local structure experiment compared
to the Nottingham and the Karaoke dataset, since the lat-
ter requires random splitting to get the phrase-level music
pieces and we cannot guarantee that the cutting points are
precisely the start/end of a phrase. Our final dataset con-
tains 16,000 16-bar pop music samples.

4.2. Results

4.2.1. EXPERIMENT ON STRUCTURED CONDITION

We first experiment the model with structured condition.
We want to know if (1) the structured condition is effective
in the context of VAE; (2) if the music structure in har-
monic context can be used as an explicit representation of
melody structure.

To show the effectiveness of condition, we train a model
on 2-bar melody using hierarchical VAE where each local
encoder encodes one beat of the melody and each global
encoder output a global latent code to summarize the whole
song. By providing harmonic context, we want the global
latent code to focus more on the inner properties of the
melody, e.g., pitch contour and rhythmic pattern, instead
of the ones that depend heavily on the harmonic context.

Figure 10 show that when we alter the condition of the
HVAE decoder and kept the latent code unchanged, the
model will generate a melody with a similar contour to the
original one while some pitches are slightly adjusted to be
consistent with the harmonic context. This means the con-
ditions are effective in the sense that the latent code does
not represent the melody in a hard way by memorizing the
exact pitch. Instead, it memorizes some abstract properties

www.hooktheory.com
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Chord
Condition

Tonality
Condition KL Loss Recon.

Loss
No No 0.2254 0.0433
Yes No 0.2154 0.0504
No Yes 0.2191 0.0783
Yes Yes 0.2143 0.0253

Table 1. KL Loss and Reconstruction loss on training over 2-bar
melodies, with or without chord condition or tonality condition

of the melody like how the pitch contour goes.

Figure 10. An example of manipulation of the structured condi-
tion. The top score contain the original music piece and the har-
monic conditions. The bottom score contain the altered conditions
and the generated melody with the altered chords and keys as the
condition.2

However, when it comes to structure representation, we
find that the harmonic conditions are not a suitable con-
straint to generate structural melodies. The reason is that
the conditions are not powerful enough. By altering them,
each note pitch only changes up to 1 to 2 semitones. This is
barely enough to change the global structure of the melody.
Also, we find the model trained with and without the con-
ditions actually acquire similar performance with a similar
KL loss, which means that the structure of the conditions
does not help much on getting a more compact content rep-
resentation of the melody. This observation gives us the
idea that the structure information is actually stored inside
of the latent variable, instead of the external conditions.

4.2.2. EXPERIMENT ON BAR-LEVEL SIMILARITY
REPRESENTATION

We train the model proposed in 3.1 on 16-bar melody with
the following hyper-parameters: (a) number of heads H =
16, (b) bar-level latent code dimension zdim = 512, (c)
(λ1, λ2) = (1.0, 0.3). After training, the model acquires
a high reconstruction accuracy (97.59%) on the validation
set.

One advantage of the model is the fact that each atten-
tion matrix has a clear meaning corresponding to the self-
similarity between two bars of the song. Therefore, we can
visualize the attention matrix as shown in Figure 12.

However, the model has its limitation in two aspects. First,
we find that the structure extracted by the model is incom-
plete. When we resample the latent variable, some of the
global structure information is kept, but some others are
lost. See Figure. 11 for such an example. Second, the
model does not have a compact representation of the music
content as each bar still has an individual latent variable,
which might contain redundant information. Also, we can-
not get a disentangled representation of music content from
the latent representation.

Figure 11. An example of generating a long music piece (the
lower part) that has a similar structure to a given piece (the upper
part). In generation, the latent code of the given piece is resam-
pled but the MSASM is kept the same. The generated piece has a
similar ABAC structure as the original one. However, some local
structures (e.g., the similarity between the first 2 bars) are lost.

Figure 12. Parts (3 heads) of the MSASM values correspond to
the song in Figure 11. Lighter colors in each matrix denote larger
values and the vertical yellow bars are the separator for different
matrices.

4.2.3. EXPERIMENT ON STRUCTURE-CONTENT
DISENTANGLEMENT

Sample
length 8 bars 16 bars

HVAE 89.63 80.85
Proposed 93.82 86.27

Table 2. Reconstruction accuracy for the baseline model and the
proposed model in section 3.3.

We train the model proposed in 3.3 with a latent dimension
zdim = 512, number of heads H = 8, number of compo-
nents C = 16 and KL loss weight (βz, βa) = (0.1, 2).
We find the model hard to train as it tries to acquire a
more compact music content representation z. Still, we
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Approach Structure
Representation

Content
Representation

Effectiveness on
Structure Regularization

Bar-Level Similarity
Implicit
(Self-Attention) Too Loose Moderate

Structured Condition
Explicit
(Harmonic Context) Loose Poor

Content-Structure
Disentanglement Implicit (Attention) Compact Good

Table 3. Comparison of the proposed methods

Exact 
Repetition

Inexact 
Repetition

Inexact 
Repetition

Exact 
Repetition

Exact 
Repetition

Inexact 
Repetition

Downstream Upstream

Downstream Upstream

A A’

A A’ 

  : Chong’er Fei

  : Peng You

  
 : Chong’er Fei’s  + Peng You’s  

  
 : Peng You’s  + Chong’er Fei’s  

Figure 13. A demonstration of the latent code exchange process
on two Chinese pop songs Chong’er Fei and Peng You.4

find the variational attention helps by comparing the re-
construction accuracy to the pure hierarchical decoder by
the original MusicVAE (Roberts et al., 2018) (the results
are shown in Table 2). To validate the effectiveness of
the content-structure disentanglement, we use latent-code
swapping technique similar to the ones in (Natsume et al.,
2018; Jetchev & Bergmann, 2017). Specifically, we are
given two 8-bar melody lines ma,mb from real music and
calculate their latent representations:

(Aa, za) ← Encode(ma, ca) (15)
(Ab, zb) ← Encode(mb, cb) (16)

where ca (cb) denotes the corresponding chord condition to
the melody ma (mb). Then, we generate two new melodies
by swapping one latent representation Aa,Ab:

m′a ← Decode(Ab, za, ca) (17)
m′b ← Decode(Aa, zb, cb) (18)

Comparing the generated melody pieces to the original
ones allow us to understand which features are controlled
by A and z, respectively. An example result is shown in

Figure 13 . We experimented with 10 pop songs and ob-
served some interesting results:

1. The generated melody m′a shares a similar music
structure as mb. The observed structure similarity is
multi-level, including short-term and long-term repe-
titions.

2. The generated melody m′a shows a similar rhythmic
pattern and local pitch transition with ma.

We conclude from these findings that in the new model, the
original latent code z along with the conditions controls the
local content of the music, while the variational attention A
controls the structure on how these local content should be
arranged to a long music piece. This agrees with human’s
perception of music structure.

5. Discussion and Conclusion
In this paper, we design and experiment with several novel
methods trying to find a suitable way to represent music
structures, and furthermore trying to disentangle it from the
representation of music content. The comparison of differ-
ent methods is shown in Table 3.

While we find the third method works best, it still has sev-
eral remaining issues. First, the model still experiences sig-
nificant accuracy drop when generalizing to longer music.
Second, as the proposed method do not have extra regu-
larization on the two latent variables, the disentanglement
of structure and content is actually unsupervised. There-
fore, the effectiveness of disentanglement is generally hard
to guarantee theoretically. Third, the network structure is
only a prototype and need to be further optimized.
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